Obtaining Pig Iron Alloyed Which Ni and Cr by Carbothermic Reduction in a Direct Current Arc Furnace of Nicaro Tails from Nickel Production

  • Amado Cruz-Crespo Centro de Investigaciones de Soldadura, Facultad de Ingeniería Mecánica e Industrial, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, CP 54 830, Cuba https://orcid.org/0000-0003-0227-9853
  • Jesús Ortiz-Bárcenas Departamento de Desarrollo, Grupo Empresarial de la Industria Sidero Mecánica, La Habana, CP 10800, Cuba https://orcid.org/0000-0002-3213-5597
  • Lorenzo Perdomo-González Centro de Investigaciones de Soldadura, Facultad de Ingeniería Mecánica e Industrial, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, CP 54 830, Cuba https://orcid.org/0000-0002-3425-1487
  • Rafael Quintana-Puchol Centro de Investigaciones de Soldadura, Facultad de Ingeniería Mecánica e Industrial, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, CP 54 830, Cuba https://orcid.org/0000-0002-8861-0270
  • josé Pons-Herrera Departamento de Química y Metalurgia, Facultad de Metalurgia y Electromecánica, Universidad de Moa “Antonio Núñez Jiménez”, Moa, Holguín, CP 83330, Cuba https://orcid.org/0000-0002-5265-2962
  • Gualberto Rosales-Martín Departamento Técnico, ACINOX Tunas, Ministerio de Industrias, Las Tunas, CP 75100, Cuba https://orcid.org/0000-0002-3313-8423
Keywords: pig iron, nickel production tailings, reductive fusion, carbothermic reduction, scrap replacement

Abstract

The existence residuals from nickle (Ni) production that could be used to obtain metallized materials in the steel production along with the insufficient availability of coke, leads us to think of alternative sustainable processes, based on more accessible reducers, such as non-coking coals. The objective of the research was to evaluate the production of pig iron alloyed with Ni and Cr by carbothermal reduction in a direct current arc furnace of tailings from the Ni production process in Nicaro, Cuba, without benefiting, using anthracite coal as a reducer in order to substitute scrap in the process to obtain alloy steels. For this purpose, theoretical calculations to obtain pig iron by carbothermal reduction were carried out to establish the composition of the charge and the experimental validation of obtaining pig iron was conducted. The amounts of the foundry products, their yields, the composition of the pig iron obtained and the recovery of Fe, Ni and Cr were determined. The study shows that it is viable to obtain pig iron alloyed with Ni and Cr, by means of carbothermal reduction in a direct current arc furnace of untreated Nicaro tailings, using anthracite coal as a reducer

Downloads

Download data is not yet available.

Author Biographies

Amado Cruz-Crespo, Centro de Investigaciones de Soldadura, Facultad de Ingeniería Mecánica e Industrial, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, CP 54 830, Cuba

Professor and Researcher at the Welding Research Center of the Central University "Marta Abreu" of Las Villas (UCLV). Ferrous Metallurgical Engineer and Master of Science from the Moscow Institute of Steel and Alloys. Master in Mechanical Engineering "Welding Mention" from UCLV. Doctor in Technical Sciences from the Mining-Metallurgical Institute of Moa, Cuba. He has made several postdoctoral stays in Brazil and has been Visiting Professor at Universities in Nicaragua, Chile and Brazil. He is a Member of the Doctoral Committees in Mechanical Engineering and in Metallurgy and Materials of the UCLV and the Moa University, respectively. He is Executive Secretary of the Territorial Program of Industries of the Ministry of Science, Technology and Environment of Villa Clara, Cuba. He has been the tutor of several doctoral and master's theses related to the development of ferroalloys and consumables for welding and hardfacing, the development of alloys and weldability studies of steels. He has led several research projects. He is the author of several invention patents. He has several awards, including five Annuals from the Cuban Academy of Sciences. He teaches Materials Science, Welding Metallurgy and Tribology. He has held various academic responsibilities

Jesús Ortiz-Bárcenas, Departamento de Desarrollo, Grupo Empresarial de la Industria Sidero Mecánica, La Habana, CP 10800, Cuba

Specialist at the Business Group of the Iron and Steel Industry. Metallurgical Engineer and Master of Science from the Moscow Institute of Steel and Alloys. Doctor in Technical Sciences from the University of Moa, Cuba. He has carried out several researches stays and work missions in different countries. He has led several research projects. He was director of the Steel Research Center (Nicaro, Cuba), of the Metallurgical Research Center (Havana, Cuba) and of the Development in the Ministry of the Iron and Steel Industry, Cuba. He has been the author of several scientific articles and presentations at international events

Lorenzo Perdomo-González, Centro de Investigaciones de Soldadura, Facultad de Ingeniería Mecánica e Industrial, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, CP 54 830, Cuba

Researcher at the Welding Research Center of the Central University "Marta Abreu" of Las Villas (UCLV). Graduated as Chemical Engineer and Master from UCLV. Doctor in Technical Sciences from the Mining-Metallurgical Institute of Moa, Cuba. He has made several postdoctoral stays in Brazil. He is a Member of the Doctoral Committee of the Metallurgy and Materials Program of the Moa University. He has tutored several doctoral and master theses, related to the development of ferroalloys and consumables for hardfacing. He is the author of several invention patents. He has led various research projects. He has several awards, including five Annual Awards from the Cuban Academy of Sciences. He teaches undergraduate and postgraduate courses in Corrosion

Rafael Quintana-Puchol, Centro de Investigaciones de Soldadura, Facultad de Ingeniería Mecánica e Industrial, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, CP 54 830, Cuba

Professor at the Welding Research Center of the Central University "Marta Abreu" of Las Villas (UCLV). Emeritus Professor at UCLV. Graduated with a degree in Chemistry and a PhD in Mineralogy and Geology from the “Ernst-Moritz-Arnt” University of Greiswald, Germany. Doctor of Science from UCLV. Member of the Geological Society of Cuba. Tutor of several doctoral and master's theses related to the development of new materials for engineering. Author of several invention patents. Leader of various research projects. Author of several awards, including five Annual Awards from the Cuban Academy of Sciences. Author of the X-Ray Diffraction book for the Bachelor's degree in Chemistry

josé Pons-Herrera, Departamento de Química y Metalurgia, Facultad de Metalurgia y Electromecánica, Universidad de Moa “Antonio Núñez Jiménez”, Moa, Holguín, CP 83330, Cuba

Professor at the Department of Chemistry and Metallurgy of the Faculty of Metallurgy and Electromechanics of Moa University "Antonio Núñez Jiménez", Cuba. Metallurgical Engineer and PhD in Technical Sciences from the Moa Mining-Metallurgical Institute. He has carried out research stays in different countries. Coordinator of the Metallurgy and Materials Doctoral Program of the Moa University, Cuba. Tutor of several doctoral and master's theses related to the processing of mineral resources. Leader of various research projects. Author of several articles and awards. He has held different academic responsibilities

Gualberto Rosales-Martín, Departamento Técnico, ACINOX Tunas, Ministerio de Industrias, Las Tunas, CP 75100, Cuba

Specialist at the steel producing company "ACINOX Tunas" of the Ministry of Industries, Cuba. Metallurgical Engineer and Master in Metallurgy from the Mining-Metallurgical Institute of Moa, Cuba. Author of several papers presented at international events. Tutor of several degree theses in Metallurgical and Materials Engineering. He has held technical and executive responsibilities in the industrial sector. He is d PhD student of the Metallurgy and Materials Doctoral Program at Moa University

References

Alencastro-De Araujo, J., Schalch, V. (2014). Recycling of electric arc furnace (EAF) dust for use in steel making process. Journal of Materials Research and Technology, 3(3), 274-279.
Anduze-Nogueira, A. E., Breda-Mourão, M., Takano, C., Martins dos Santos, D. (2010). Effect of slag composition on iron nuggets formation from carbon composite pellets. Materials Research, 13(2), 191-195.
Astuti, W., Andika, R., Nurjaman, F. (2018). Effect of basicity and reductant amount in the nickel pig iron (NPI) production from Indonesian limonite ore in submerged electric arc furnace (SAF). Mineral Processing and Technology International Conference 2017. IOP Conferences Series: Materials Science and Engineering, 285, 012023.
Begman, E. F., Cherebin, A. N., Pojvisnev A. N., Yusfín, Y. S. (1978). Metalurgia del arrabio. Moscú: Ediciones Metalurgia.
Belec Vario Lab. (2023). High spectrómeter for metal analysis [en línea] disponible en: http://koreainstech.co.kr/bbs/down/D%20Belec%20Vario-Lab.pdf [consulta: 3 agosto 2023].
Committee for Fundamental Metallurgy. (1981). Slag atlas. Dusseldorf: Verlag Stahleinsen M. B. H.
Cruz-Crespo, A., Perdomo-González, L., Quintana-Pucho, R., Scotti, A. (2019). Fundente para recargue por soldadura con arco sumergido a partir de ferrocromo-manganeso y escoria de la reducción simultánea de cromita y pirolusita. Revista Soldagem & Inspeção, 24, 1-10.
Cruz-Crespo, A., Quintana-Puchol, R., Perdomo-González, L., Gómez-Pérez, C., García-Sanchez, L. L., Jimenez-Vilesa, G., Cores-Sanchez, A. (2005). Carbothermic reduction of pirolusite to obtaing carbón-bearing ferromanganese and slag suited to the development of welding materials. Welding International, 19, 544-551.
Emre-Benkli, Y., Boyrazli, M., Lule Senoz, G. M., Cizmecioglu, Z. (2018). Investigation of reduction of magnetite based carbon composite pellets under semi-fusion conditions. Physicochemical Problem of Mineral Processing, 54(3), 621-628.
Ferreiro, Y. (2014). Obtención de lupias de arrabio a partir del tratamiento metalúrgico de las colas de Nicaro. Tesis doctoral. Moa: Instituto Superior Minero Metalúrgico.
Grobler, F., Minnitt, R. C. A. (1999). The increasing role of direct reduced iron in global steelmaking. The Journal of The South African Institute of Mining and Metallurgy, 2, 111-116.
Guo, X., Chengyan, Xu C., Wang, Y., Li, X., Sun, T. (2021). Recovery of nickel and iron from low–grade laterite ore and red mud using co-reduction roasting: Industrial-scale test. Physicochemical Problem of Mineral Processing, 57(3), 61-72.
Isnugroho, K., Birawidha, D. C. (2018). The production of pig iron from crushing plant waste using hot blast cupola. Alexandria Engineering Journal, 57, 427-433.
Liu, Sh., He, A., Wu, N., Zeng, J. (2019). Physical simulation of recovering cast iron from Bayer Red Mud. Procedia Manufacturing, 37, 443-449.
Małecki, S., Gargul, K., Warzecha, M., Stradomski, G., Hutny, A., Madej, M., Dobrzynski, M., Prajsnar, R., Krawiec, G. (2021). High-Performance method of recovery of metals from EAF dust – processing without solid waste. Materials, 14, 6061.
Nowacki, K., Macia, T., Lis, T. (2021). Recovery of iron from mill scale by reduction with carbon monoxide. Minerals, 11 (5), 529, 1-13.
Ortiz, J. (2015). Obtención de un producto prerreducido para la producción de arrabio con níquel (nickel pig iron) a partir del tratamiento de los escombros lateríticos de Mina Martí de Nicaro. Tesis doctoral. Moa: Instituto Superior Minero Metalúrgico.
Perdomo-González, L., Quintana-Puchol, R., Cruz-Crespo, A., Castellanos-Estupiñán, L., García-Sánchez, L., Formoso-Prego, A., Cores-Sánchez, A. (2003). Empleo de cromitas refractarias para la obtención de fundentes aglomerados utilizados en la soldadura automática por arco sumergido (SAW). Revista de Metalurgia, 39, 268-278.
Perdomo-González, L., Quintana-Puchol, R., Cruz-Crespo, A., Gómez-Pérez, C. R. (2017). Obtaining of components of fluxes for submerged arc welding from the carbothermic reduction of chromite refractory. Revista Técnica de la Facultad de Ingeniería de la Universidad de Zulia, 40(1), 42-51.
Perdomo-González, L., Quintana-Puchol, R., Cruz-Crespo, A., Gómez-Pérez, C. R. (2018). Obtención en horno eléctrico de arco de aleaciones del sistema Fe-Mn-Cr-C y escorias destinadas al desarrollo de consumibles de soldadura. Minería y Geología, 33 (1), 92-107.
Permatasari, N. V., Warsito, B., Kawigraha, A., Ikhwani, N. (2021). Iron recovery from residue of lateritic nickel leaching industry. E3S Web of Conferences, 317, 04033.
Quintana-Puchol, R., Perdomo-González, L., Cruz-Crespo, L., Gómez-Rodríguez, L., García-Sánchez, L. L., Cerpa-Naranjo, A., Cores-Sánchez, A. (2004). Obtención simultánea de ferroaleación multicomponente y escoria a partir de arenas negras, para el desarrollo de consumibles de soldadura por arco eléctrico. Revista de Metalurgia, 40, 294-303.
Quintana-Puchol, R., Perdomo-González, L., Gómez-Pérez, C., Cruz-Crespo, A., Rodríguez-Pérez, M., Castellanos, G. (2002). Procedimiento de obtención simultánea de escoria esponjosa y aleaciones de cromo destinadas a la confección de fundentes aglomerados para la Soldadura Automática bajo fundente (SAW). Patente No. C22C 33/00. C22C 19/05. La Habana: Oficina Cubana de la Propiedad Intelectual.
Riss, A., Khodorovsky, Y. (1975). Production of ferroalloys. Moscow: Foreign Languages Publishing House.
Seok, C. W., Lee, K. H., Son, W. Y., Park, J. K., Kang, Y. (2021). Study on the refining conditions of nickel pig iron for high purity nickel matte production. Proceedings of the 16th International Ferro-Alloys Congress (INFACON XVI). Trondheim: SINTEF/NTNU/FFF, 1-7.
Shidqi-Khaerudini, D., Ilham Chanif, I., Dita Rama-Insiyanda, D., Fredina Destyorini, F., Alva, S., Pramono, A. (2019). Preparation and characterization of mill scale industrial waste reduced by biomass‑based carbon. Journal of Sustainable Metallurgy, 5(4), 510-518.
Takao Harada, T., Tsuge, O., Kobayashi, I, Tanaka, H., Uemura, H. (2005). The development of new iron making processes. Kobelco Technology Review, 26, 92-97.
Von-Bogdandy, L., Engell, H. J. (1971). The reduction of iron ores. Berlin: Springer-Verlag, Berlin Heidelberg GmbH.
Walburga-Keglevich, P. J., Heck, N. C., Faria-Vilela, A. C. (2017). EAF dust: an overview on the influences of physical, chemical and minera features in its recycling and waste incorporation routes. Journal of Materials Research and Technology, 6(2), 194-202.
Yildirim, H., Morcali, H., Turan, A., Yucel, O. (2013). Nickel pig iron production from lateritic nickel ores. Proceedings of the Thierteenth International Ferroalloys Congress. Almaty: Ferronickel Production and Operation, 238-244.
Yusfín, Y. S., Danshin, V. V., Pashkov, N. F., Pitateliev, V. A. (1982). Teoría de la metalización de minerals de hierro. Moscú: Ediciones Metalurgia.
Zemri, C., Bachir-Bouiadjra, M. (2020). Comparison between physical–mechanical properties of mortar made with Portland cement (CEMI) and Slag cement (CEMIII) subjected to elevated temperature. Case Studies in Construction Material, 12, 1-12, e00339.
Published
2023-09-16
How to Cite
Cruz-Crespo, A., Ortiz-Bárcenas, J., Perdomo-González, L., Quintana-Puchol, R., Pons-Herrera, josé and Rosales-Martín, G. (2023) “Obtaining Pig Iron Alloyed Which Ni and Cr by Carbothermic Reduction in a Direct Current Arc Furnace of Nicaro Tails from Nickel Production”, Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 46(1), p. e234607. doi: 10.22209/rt.v46a07.
Section
Artículos de Investigación