Water productivity using furrow and drip irrigation in hybrid maize

  • José Conde Universidad Técnica de Machala - Ecuador, Facultad de Ciencias Agropecuarias, Grupo de Investigaciones Multidisciplinario (GIM). Machala, Ecuador. https://orcid.org/0000-0003-2538-1770
  • Sara Castillo Universidad Técnica de Machala - Ecuador, Facultad de Ciencias Agropecuarias, Grupo de Investigaciones Multidisciplinario (GIM). Machala, Ecuador. https://orcid.org/0000-0001-9559-6422
  • Leonor Rivera Universidad Técnica de Machala - Ecuador, Facultad de Ciencias Agropecuarias, Grupo de Investigaciones Multidisciplinario (GIM). Machala, Ecuador. https://orcid.org/0000-0002-9407-1525
  • Paola Gálvez Universidad Técnica de Machala - Ecuador, Facultad de Ciencias Agropecuarias, Grupo de Investigaciones Multidisciplinario (GIM). Machala, Ecuador. https://orcid.org/0000-0003-4080-2019
Keywords: non-erosive flow, subsurface irrigation, lack of water, slope of the furrows

Abstract

Agriculture is the economic sector that consumes around 70 % of the total water extracted globally, considering itself a victim of its own inefficiency. The present work was oriented to look for irrigation alternatives that allow a greater productivity of water. The trial was carried out at the Faculty of Agricultural Sciences, Technical University of Machala, Ecuador. The amount of water applied to the corn crop through furrow and drip irrigation was evaluated. The treatments were: furrow irrigation, superficial drip irrigation and subsurface drip irrigation at 20 cm. The trial had a surface area of 450 m2, in a completely randomized block experimental design with three treatments and three repetitions. The control of the irrigation regime was carried out through tensiometers installed for each treatment. The volume of water applied and the dry grain yield in irrigation by furrows was 3,484 m3.ha-1 and 9,175 kg.ha-1, for surface drip irrigation of 1,452 m3.ha-1 and 10,200 kg.ha-1, and for subsurface drip irrigation it was 1,237 m3.ha-1 and 10,181.2 kg.ha-1. The water productivity for the furrow irrigation treatment was 2.63 kg.m-3, for surface drip irrigation it was 7.02 kg.m-3 and for subsurface drip irrigation at 20 cm it was 8.23 kg.m-3 being the highest productivity.

Downloads

Download data is not yet available.

References

Alarcón, J., (2020). El agua como fuerza motriz de las plantas. Academia de Ciencias de la Región de Murcia. Instituto de España. https://www.um.es/acc/wp-content/uploads/Alarcon-Academico-DiscursoyContestacion.pdf
Al-Ghobari, H. and Dewidar, A. (2018). Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. Agricultural Water Management, 209, 55-61. https://DOI:10.1016/j.agwat.2018.07.010.
Droogers, P. and Kite, G. (1999). Water productivity from integrated basin modeling. Irrigation and drainage systems, 13, 275-290. https://doi.org/10.1023/A:1006345724659
Fuentes, J., (2002). Curso de riego para regantes, Ministerio de Agricultura Pesca y alimentación, Ediciones Mundi Prensa, España.
Gobierno Autónomo Descentralizado Provincial de El Oro. (2021). Plan de Desarrollo y Ordenamiento Territorial de La Provincia de El Oro 2020 - 2030. Gobierno Autónomo Descentralizado Provincial de El Oro. https://datos.eloro.gob.ec/PDF%20PDYOT/PDYOT%20PROVINCIAL%20EL%20ORO.pdf
Guevara, A., Bárcenas, G., Salazar, F., González, E. & Suzán, H. (2005). Alta densidad de siembra en la producción de maíz con irrigación por goteo subsuperficial. Agrociencia, 39(4), 431-439. https://www.redalyc.org/pdf/302/30239407.pdf
Gurovich, L., (1985). Fundamentos y diseño de sistemas de riego. Instituto Interamericano de Cooperación para la Agricultura (IICA). San José Costa Rica. http://repositorio.iica.int/bitstream/handle/11324/7213/BVE18040268e.PDF?sequence=1&isAllowed=y.
Irmak, S., Djaman, K. & Rudnick, D.R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrigation Science 34, 271–286 (2016). https://doi.org/10.1007/s00271-016-0502-z.
Jeswani, H.K., Azapagic, A., (2011). Water footprint: methodologies and a case study for assessing the impacts of water use. Journal of Cleaner Production. 19, 1288-1299. DOI:10.1016/j.jclepro.2011.04.003.
Kafkafi, U. and Tarchitzky J. (2012). Fertirrigación: Una herramienta para una eficiente fertilización y manejo de agua. Suiza.
Lucero-Vega, G., Troyo-Diéguez, E., Murillo-Amador, B., Nieto-Garibay, A., Ruíz-Espinoza, F.H., Beltrán-Morañes, F.A. & Zamora-Salgado, S (2017). Diseño de un sistema de riego subterráneo para abatir la evaporación en suelo desnudo comparado con dos métodos convencionales. Agrociencia. 51, 487-505. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952017000500487
Martínez, J. and Reca, J. (2014). Water use efficiency of surface drip irrigation versus an alternative subsurface drip irrigation method. Journal of Irrigation and Drainage Engineering. 140(10). https://doi.org/10.1061/(asce)ir.1943-4774.0000745
Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO, 2019). El estado mundial de la agricultura y la alimentación. https://www.fao.org/3/ca6030es/ca6030es.pdf.
Shen, D., Shang, G., Xie, R., Ming, B., Hou, P., Xue, J., Li, S., & Wang, K. (2020). Improvement in Photosynthetic Rate and Grain Yield in Super-High-Yield Maize (Zea mays L.) by Optimizing Irrigation Interval under Mulch Drip Irrigation. Agronomy (Basel, Switzerland), 10(11), 1778. https://doi.org/10.3390/agronomy10111778
Siebert, and S., Döll, P. (2010). Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation, Journal. Hydrology, 384,198207.https://saiplatform.org/uploads/Library/SiebertandDoell2010_quantifyingblueandgreenvirtualwatercontentofcrops.pdf.
Stanghellini, C. (2010). Water use efficiency in tomato. Practical Hidroponics y Greenhouses. p. 52-59.
Subsecretaría del Agua (SENAGUA) (2019). Plan Nacional de Riego y Drenaje 2019-2027. Quito-Ecuador. https://prefecturadeesmeraldas.gob.ec/docs/8_plan_nacional_de_riego_y_drenaje.pdf.
Subsecretaría de Riego y Drenaje (SENAGUA). (2016). Propuesta de Modelo de Gestión Integral del Riego en el Ecuador. Subsecretaría de Riego y Drenaje. http://www2.competencias.gob.ec/wp-content/uploads/2021/03/01-06IGC2016-MGRIEGO-SENAGUA-MODELO-DE-GESTIO%CC%81N-INTEGRAL-DEL-RIEGO.pdf
Villaseñor, D., Chabla, J. and Luna, E. (2015). Caracterización física y clasificación taxonómica de algunos suelos dedicados a la actividad agrícola de la provincia de El Oro. CUMBRES, Revista Científica, 1(2), 28 – 34 https://doi.org/10.48190/cumbres.v1n2a5
Zhang, G., Shen, D., Ming, B., Xie, R., Jin, X., Liu, C., Hou, P., Xue, J., Chen, J., Zhang, W., Liu, W., Wang, K., Li, S. (2019). Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China. The Crop Journal, 7(3), 322-334. https://www.sciencedirect.com/science/article/pii/S2214514119300042.
Yan Mo, Guangyong Li, Dan Wang (2016). A sowing method for subsurface drip irrigation that increases the emergence rate, yield, and water use efficiency in spring corn. Agricultural Water Management, 179(1), 288-295. https://doi.org/10.1016/j.agwat.2016.06.005
Published
2023-07-01
How to Cite
Conde, J., Castillo, S., Rivera, L., & Gálvez, P. (2023). Water productivity using furrow and drip irrigation in hybrid maize. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 40(3), e234024. Retrieved from https://www.produccioncientificaluz.org/index.php/agronomia/article/view/40517
Section
Crop Production