Machine learning algorithms to predict the use of digital financial platforms in university environments
Abstract
The advancement of artificial intelligence and machine learning has transformed the financial system. The purpose of this article is to analyze the predictive capacity of machine learning algorithms regarding the factors that influence the use of digital financial platforms in university environments. A quantitative and applied approach was adopted, with a non-experimental and cross-sectional design. From the population of users of digital financial platforms at the Universidad Estatal de Milagro, a sample of 968 valid records was obtained, of which 83.16% were used for model training and 16.84% for validation. Nine supervised algorithms were applied, including Random Forest, Gradient Boosting, Logistic Regression, and Artificial Neural Networks. The results showed a high predictive capacity in decision tree based models, highlighting the significant influence of financial literacy, educational level, age, and frequency of use on the adoption of digital financial platforms. A positive correlation was confirmed between financial knowledge and the efficient use of digital tools. The study concludes that machine learning algorithms are effective tools for predicting patterns of digital financial use and for optimizing decision making in academic settings.
Downloads
References
Amidu, M., Akakpo, A. A., Mensah, J. K., & Asiedu, E. (2023). Gender, digital financial services and vulnerability in the era of pandemics: A cross-sectional analysis. F1000Research, 11, 1218. https://doi.org/10.12688/f1000research.111232.2
Asselman, A., Khaldi, M., & Aammou, S. (2023). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, 31(6), 3360-3379. https://doi.org/10.1080/10494820.2021.1928235
Bastidas-Guerrón, J. L., Cárdenas-Fierro, G. M., Mora-Lucero, A. C., Quinde-Sari, F. R., Sabando-García, A. R., & Moreira-Choez, J. S. (2025). Financial literacy and educational level in Ecuadorian students: a structural analysis. Frontiers in Education, 10, 1596635. https://doi.org/10.3389/feduc.2025.1596635
Ben, S., Khatoon, G., Bala, H., & Alzuman, A. (2024). The role of financial technology on the nexus between demographic, socio-economic, and psychological factors, and the financial literacy gap. Sage Open, 14(2). https://doi.org/10.1177/21582440241255678
Chernykh, E. A. (2021). Socio-Demographic Characteristics and Quality of Employment of Platform Workers in Russia and the World. Economic and Social Changes: Facts, Trends, Forecast / Экономические и Социальные Перемены: Факты, Тенденции, Прогноз, 14(2), 172-187. https://doi.org/10.15838/esc.2021.2.74.11
Dzogbenuku, R. K., Amoako, G. K., Kumi, D. K., & Bonsu, G. A. (2022). Digital payments and financial wellbeing of the rural poor: The moderating role of age and gender. Journal of International Consumer Marketing, 34(2), 113-136. https://doi.org/10.1080/08961530.2021.1917468
Edo, O. C., Etu, E.-E., Tenebe, I., Oladele, O. S., Edo, S., Diekola, O. A., & Emakhu, J. (2023). Fintech adoption dynamics in a pandemic: An experience from some financial institutions in Nigeria during COVID-19 using machine learning approach. Cogent Business & Management, 10(2), 2242985. https://doi.org/10.1080/23311975.2023.2242985
Feijoó, E. M., Gutiérrez, N. D., Orellana, M. N., & Eras, R. D. J. (2025). Transformación digital: Una brecha crítica para la profesión contable. Revista de Ciencias Sociales (Ve), XXXI(4), 304-314. https://doi.org/10.31876/rcs.v31i4.44861
Fu, P., Yang, H., Qian, W., Mohamed, E. I., Almohri, W. A. J., & Alshanbari, H. M. (2025). Financial engineering and the digital economy: The implementations of machine learning algorithms. Alexandria Engineering Journal, 125, 311-319. https://doi.org/10.1016/j.aej.2025.03.122
Garay, H. B., Aguirre, E. M., Pinchi, A., Ruiz, S., Lamadrid, C. A., Bayona, J. A., Palma, E. R., & Flores-Tananta, C. A. (2024). Financial model construction and identification of abnormal activities in mobile networks for e-commerce platform using machine learning algorithm. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(3), 222-235. https://doi.org/10.58346/JOWUA.2024.I3.015
Hashim, M. A. M., Tlemsani, I., & Matthews, R. (2022). Higher education strategy in digital transformation. Education and Information Technologies, 27(3), 3171-3195. https://doi.org/10.1007/s10639-021-10739-1
Koskelainen, T., Kalmi, P., Scornavacca, E., & Vartiainen, T. (2023). Financial literacy in the digital age—A research agenda. Journal of Consumer Affairs, 57(1), 507-528. https://doi.org/10.1111/joca.12510
Lal, S., Bawalle, A. A., Khan, M. S. R., & Kadoya, Y. (2025). What Determines Digital Financial Literacy? Evidence from a Large-Scale Investor Study in Japan. Risks, 13(8), 149. https://doi.org/10.3390/risks13080149
Li, Q., & Liu, Q. (2023). Impact of digital financial inclusion on residents’ income and income structure. Sustainability, 15(3), 2196. https://doi.org/10.3390/su15032196
Liu, M., Gao, R., & Fu, W. (2021). Analysis of Internet Financial Risk Control Model Based on Machine Learning Algorithms. Journal of Mathematics, 1-10. https://doi.org/10.1155/2021/8541929
Liu, Z., & Chen, H. (2017). A predictive performance comparison of machine learning models for judicial cases. 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 1-6. https://doi.org/10.1109/SSCI.2017.8285436
Mahalakshmi, V., Kulkarni, N., Pradeep, K. V., Kumar, K. S., Sree, D. N., & Durga, S. (2022). The role of implementing artificial intelligence and machine learning technologies in the financial services industry for creating competitive intelligence. Materials Today: Proceedings, 56(Part-4), 2252-2255. https://doi.org/10.1016/j.matpr.2021.11.577
Maita-Cruz, Y. M., Flores-Sotelo, W. S., Maita-Cruz, Y. A., & Cotrina-Aliaga, J. C. (2022). Inteligencia artificial en la gestión pública en tiempos de Covid-19. Revista de Ciencias Sociales (Ve), XXVIII(E-5), 331-330. https://doi.org/10.31876/rcs.v28i.38167
Moreira-Choez, J. S., Gómez, K. E., Lamus, T. M., Sabando-García, Á. R., Cruz, J. C., & Cedeño, L. A. (2024). Assessment of digital competencies in higher education faculty: a multimodal approach within the framework of artificial intelligence. Frontiers in Education, 9, 1425487. https://doi.org/10.3389/feduc.2024.1425487
Moreira-Choez, J. S., Núñez-Naranjo, A. F., Carrasco-Valenzuela, A. C., López-López, H. L., Vázquez, J. A., & Sabando-García, A. R. (2025). Machine Learning Algorithms to Predict Digital Competencies in University Faculty. F1000Research, 14, 573. https://doi.org/10.12688/f1000research.165342.1
Murugan, M. S., & Kala, S. (2023). Large-scale data-driven financial risk management & analysis using machine learning strategies. Measurement: Sensors, 27, 100756. https://doi.org/10.1016/j.measen.2023.100756
Nguyen, D. K., Sermpinis, G., & Stasinakis, C. (2023). Big data, artificial intelligence and machine learning: A transformative symbiosis in favour of financial technology. European Financial Management, 29(2), 517-548. https://doi.org/10.1111/eufm.12365
Ngware, S. G. (2024). Gender norms and demographics in entrepreneurship and digital financial services utilization. International Journal of Entrepreneurial Knowledge, 12(1), 58-69. https://doi.org/10.37335/ijek.v12i1.220
Ozili, P. K. (2018). Impact of digital finance on financial inclusion and stability. Borsa Istanbul Review, 18(4), 329-340. https://doi.org/10.1016/j.bir.2017.12.003
Paramesha, M., Rane, N., & Rane, J. (2024). Artificial intelligence, machine learning, deep learning, and blockchain in financial and banking services: A comprehensive review. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4855893
Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P., & Green, R. (2019). Artificial intelligence and machine learning in pathology: The present landscape of supervised methods. Academic Pathology, 6, 2374289519873088. https://doi.org/10.1177/2374289519873088
Romero-Carazas, R., Jiménez-Huamán, J. C., Montaño-Revilla, F. M., & Moreira-Choez, J. S. (2025). Uso de las billeteras digitales y la satisfacción de los usuarios de entidades bancarias. Revista Venezolana de Gerencia, 30(E-13), 440-546. https://doi.org/10.52080/rvgluz.30.especial13.29
Sabando-García, Á. R., Olguín-Martínez, C. M., Benavides-Lara, R. M., Salazar-Echeagaray, T. I., Huerta-Mora, E. A., Bumbila-García, B. B., Cedeño-Barcia, L. A., & Moreira-Choez, J. S. (2025). Artificial intelligence for determining learning strategies in university students. Frontiers in Education, 10, 1611189. https://doi.org/10.3389/feduc.2025.1611189
Samaddar, M., Roy, R., De, S., & Karmakar, R. (2021). A Comparative Study of Different Machine Learning Algorithms on Bitcoin Value Prediction. 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 1-7. https://doi.org/10.1109/ICAECT49130.2021.9392629
Santos, I., Silva, V., Chiarini, T., & Costa, L. (2024). Decoding the Geographical Footprint of US and European Digital Platform Companies: Insights from a comprehensive analysis of socio-economic factors. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4963047
Simovic, V., Domazet, I., Bugarcic, M., Safi, M., Sarhan, H., Bhagat, R., & Bradic, A. (2023). The association of socio-demographic characteristics of university students and the levels of their digital entrepreneurial competences. Heliyon, 9(10), e20897. https://doi.org/10.1016/j.heliyon.2023.e20897
Tian, X., Tian, Z., Khatib, S. F. A., & Wang, Y. (2024). Machine learning in internet financial risk management: A systematic literature review. PLoS ONE, 19(4), e0300195. https://doi.org/10.1371/journal.pone.0300195
Wang, T., & Tobias, G. R. (2025). Research on intelligent optimization mechanisms of financial process modules through Machine Learning-enhanced collaborative. Future Technology, 4(4), 240-254. https://fupubco.com/futech/article/view/503
Widyastuti, U., Respati, D. K., Dewi, V. I., & Soma, A. M. (2024). The nexus of digital financial inclusion, digital financial literacy and demographic factors: lesson from Indonesia. Cogent Business & Management, 11(1), 2322778. https://doi.org/10.1080/23311975.2024.2322778
Xiao, X., Yu, M., Liu, H., & Zhao, Q. (2022). How does financial literacy affect digital entrepreneurship willingness and behavior—Evidence from Chinese villagers’ participation in entrepreneurship. Sustainability, 14(21), 14103. https://doi.org/10.3390/su142114103
Yeh, J.-Y., & Chen, C.-H. (2022). A machine learning approach to predict the success of crowdfunding fintech project. Journal of Enterprise Information Management, 35(6), 1678-1696. https://doi.org/10.1108/JEIM-01-2019-0017
Zeng, Y., & Li, Y. (2023). Understanding the use of digital finance among older internet users in urban China: Evidence from an online convenience sample. Educational Gerontology, 49(6), 477-490. https://doi.org/10.1080/03601277.2022.2126341
Zhang, T., Stough, R., & Gerlowski, D. (2022). Digital exposure, age, and entrepreneurship. The Annals of Regional Science, 69(3), 633-681. https://doi.org/10.1007/s00168-022-01130-0
Zhou, K. (2023). Financial model construction of a cross-border e-commerce platform based on machine learning. Neural Computing and Applications, 35(36), 25189-25199. https://doi.org/10.1007/s00521-023-08456-6
Ziadet-Bermúdez, E. I., García-Saltos, C. D., Sabando-Mendoza, M. V., & Sánchez-Azúa, I. M. (2025). Algoritmos de aprendizaje automático para predecir la efectividad atribuida a la educación penitenciaria por estudiantes universitarios. Revista de Ciencias Sociales (Ve), XXXI(4), 288-303. https://doi.org/10.31876/rcs.v31i4.44854

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


1.jpg)

1.jpg)




















