A aplicação exógena de prolina pode aumentar a tolerância do sorgo doce (Sorghum bicolor (L.) Moench) sob estresse por déficit hídrico

Palavras-chave: sorgo, prolina exógena, estresse hídrico, SPAD, peso seco das raízes

Resumo

A seca é um importante estresse abiótico que ameaça a segurança alimentar global ao reduzir o rendimento e a qualidade das culturas. A aplicação foliar de osmoprotetores, como a prolina, oferece um meio promissor para mitigar os danos induzidos pela seca. Este estudo examinou os efeitos da prolina exógena (P0, P200, P400 e P600 mg.L-1), do genótipo de sorgo e de sua interação sobre características morfológicas, fisiológicas, bioquímicas, de qualidade forrageira e microbianas sob diferentes níveis de seca (I100, I75, I50 e I25). A aplicação de prolina aumentou a matéria seca em mais de 100 % sob déficits médios a severos e elevou o peso seco da raiz em 90 % com uma redução de 75 % da água. A resposta mais intensa ocorreu no conteúdo de clorofila (SPAD), refletindo maior estabilidade fotossintética. A prolina exógena reduziu o ressecamento foliar em 25 % e atenuou os declínios da qualidade forrageira relacionados à seca, conforme evidenciado pelas melhorias em NDF, ADF e ADL. Também aumentou a atividade da peroxidase em maior grau do que a superóxido dismutase e a catalase, minimizando a toxicidade do peróxido de hidrogênio (H₂O₂) e o estresse oxidativo. Mesmo sob seca extrema (I25), a prolina manteve o vigor das plantas e melhorou a eficiência do uso da água em 25 - 40 % na fase de plântula. Em comparação com o controle, o conteúdo de clorofila foliar (valores SPAD) diminuiu em 13.91 %, 24.28 % e 31.85 % sob os tratamentos I75, I50 e I25, respectivamente, sugerindo que as medições SPAD na fase de plântula podem servir como um indicador prático e de baixo custo para identificar genótipos de sorgo tolerantes à seca.

Downloads

Não há dados estatísticos.

Referências

Abdou, N.M., El-Saadony, F. M.A., Roby, M. H.H., Mahdy, H. A.A., El-Shehawi, A.M., Elseehy, M.M., El-Tahan, A.M., Abdalla, H., Saad, A.M., & AbouSreea, A.I.B. (2022). Foliar spray of potassium silicate, aloe extract composite and their effect on growth and yielding capacity of roselle (Hibiscus sabdariffa L.) under water deficit stress conditions. Saudi Journal of Biological Sciences, 29(11), 8074-8085. http:// doi.org/10.1016/j.sjbs.2022.02.033
Ali, Z., Merrium, S., Habib-Ur-Rahman, M., Hakeem, S., Saddique, M. A. B., & Sher, M. A. (2022). Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop. Environmental Science and Pollution Research, 29, 30967-30985. https://doi.org/10.1007/s11356-022-18846-3
Bänzinger, M., Edmeades, G. O., Beck, D., & Bellon, M. (2000). Breeding for drought and nitrogen stress tolerance in Maize: from theory to practice. pp.68. http://hdl.handle.net/10883/765
Blessington, T., Mitcham, E. J., & Harris, L. J. (2014). Growth and survival of enterobacteriaceae and inoculated salmonella on walnut hulls and maturing walnut fruit. Journal of Food Protection, 77(9), 1462-1470. http://doi.org/10.4315/0362-028X.JFP-14-075
Cheng, M., Wang, H., Fan, J., Zhang, F., & Wang, X. (2021). Effects of soil water deficit at different growth stages on corn growth, yield, and water use efficiency under alternate partial root-zone irrigation. Water, 13, 148. http:// doi.org/10.3390/w13020148
Ferreira, G,, Burch, A,, Martin, L, L., Hines, S. L., Shewmaker, G. E., & Chahine, M. (2021). Effect of drought stress on in situ ruminal starch degradation kinetics of corn for silage. Animal Feed Science and Technology, 279, 115027. https://doi.org/10.1016/j.anifeedsci.2021.115027
George, T. T., Obilana, A. O., Oyenihi, A. B., Obilana, A. B., Akamo, D. O., & Awika, J. M. (2022). Trends and progress in sorghum research over two decades, and implications to global food security. South African Journal of Botany, 151, 960-969. https://doi.org/10.1016/j.sajb.2022.11.025
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant signaling & behavior, 7(11), 1456–1466. https://doi.org/10.4161/psb.21949
Ibrahim, A. E-A., Abd El Mageed, T., Abohamid, Y., Abdallah, H., El-Saadony, M., AbuQamar, S., El-Tarabily, K., & Abdou, N. (2022). Exogenously applied proline enhances morph-physiological responses and yield of drought-stressed corn plants grown under different irrigation systems. Frontiers Plant Science, 13, 897027. http:// doi.org/10.3389/fpls.2022.897027
ISO, (2017). Microbiology of food chain - Horizontal method for the detection and enumeration of Enterobacteriaceae - Part 2: Colony-count technique. https://www.iso.org/obp/ui/en/#iso:std:iso:21528:-2:ed-2:v2:en
Jack, C. N., Row, S. L., Porter, S. S., & Friesen, M. L. (2019). A high-throughput method of analyzing multiple plant defensive compounds in minimized sample mass. Applications in Plant Sciences, 7(1), e01210. http:// doi.org/10.1002/aps3.1210
Kale, H., Kaplan, M., Ulger, I., Unlukara, A., & Akar, T. (2018). Feed value of corn (Zea mays var. indentata (sturtev.) l.h. bailey) grain under different irrigation levels and nitrogen doses. Turkish Journal Field Crops, 23(1), 56-61. http:// doi.org/10.17557/tjfc.421974
Kalhoro, S., Ding, K., Zhang, B., Chen, W., Hua, R., Shar, D., & Xuexuan, X. (2018). Soil infiltration rate of forestland and grassland over different vegetation restoration periods at Loess Plateau in northern hilly areas of China. Landscape and Ecological Engineering, 15. https:// doi.org/10.1007v/s11355-018-0363-0
Khan, P., Abdelbacki, A. M. M., Albaqami, M., Jan, R., & Kim, K. M. (2025). Proline promotes drought tolerance in maize. Biology, 14, 41. https://doi.org/10.3390/biology14010041
Kordas, L., Lejman, A., Kuc, P., Szlachta, J., Fugol, M., & Prask, H. (2024). The reaction of maize and sorghum to fertilization with granulated fertilizer obtained from digestate. Polish Journal of Environmental Studies, 33(2), 1215-1223. http:// doi.org/10.15244/pjoes/172049
Li, H., Liu, Y., Zhen, B., Lv, M., Zhou, X., Yong, B., Niu, Q., & Yang, S. (2024). Proline spray relieves the adverse effects of drought on wheat flag leaf function. Plants, 13(7), 957. https://doi.org/10.3390/plants13070957
Marček, T., Hamow, K. Á., Végh, B., Janda, T., Darko, E., & Lambreva, M. D. (2019). Metabolic response to drought in six winter wheat genotypes. PLOS One, https://doi.org/10. 1371/ journal.pone.0212411
Mi, N., Cai, F., Zhang, Y. S., Ji, R. P., Zhang, S. J., & Wang, Y. (2018). Differential responses of corn yield to drought at vegetative and reproductive stages. Plant Soil and Environment, 64(6), 260-267. https://doi.org/10.17221/141/2018-PSE
Mittler, R., Zandalinas, S. I., Fichman, Y., & Van Breusegem, F. (2022). Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 23, 663-679. https://doi.org/10.1038/s41580-022-00499-2
Nguyen, H. C., Lin, K. H., Ho, S. L., Chiang, C. M., & Yang, C. M. (2018). Enhancing the abiotic stress tolerance of plants: From chemical treatment to biotechnological approaches. Physiologia Plantarum, 164, 452-466. http:// doi.org/10.1111/ppl.12812
Noein, B., & Soleymani, A. (2022). Corn (Zea mays L.) physiology and yield affected by plant growth regulators under drought stress. Journal of Plant Growth Regulation, 41, 672-681. https://doi.org/10.1007/s00344-021-10332-3
Shah, A. A., Khan, W. U., Yasin, N. A., Akram, W., Ahmad, A., & Abbas, M. (2020). Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of Brassica oleracea. Chemosphere, 261, 127728. http:// doi.org/10.1016/j.chemosphere.2020.127728
Sher, A., Hassan, M. U., Sattar, A., Ul-Allah, S., Ijaz, M., Hayyat, Z., Bibi, Y., Hussain, M., & Qayyum, A. (2023). Exogenous application of melatonin alleviates the drought stress by regulating the antioxidant systems and sugar contents in sorghum seedlings. Biochemical Systematics and Ecology 107, 104620. https://doi.org/10.1016/j.bse.2023.104620
Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53(2), 258-260. https://doi.org/10.1104/pp.53.2.258
Trovato, M., Forlani, G., Signorelli, S., & Funck, D. (2019). Proline metabolism and it’s functions in development and stress tolerance. In book: Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants (pp.41-72). Springer Nature Switzerland. http://doi.org/10.1007/978-3-030-27423-8 2
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
Yahaya, M. A., & Shimelis, H., (2021). Drought stress in sorghum: Mitigation strategies, breeding methods and technologies. Journal of Agronomy and Crop Science, 208, 127-142. https://doi.org/10.1111/jac.12573
Zahra, N., Hafeez, M. B., Kausar, A., Alzeidi, M., Asekova, S., Siddique, K. H. M., & Farooq, M. (2023). Plant photosynthetic responses under drought stress: Effects and management. Journal of Agronomy and Crop Science, 209, 651-672. https://doi.org/10.1111/jac.12652
Zhang, R., Yang, P., Liu, S.,Wang, C., & Liu, J. (2022). Evaluation of the methods for estimating leaf chlorophyll content with SPAD Chlorophyll Meters. Remote Sensing, 14, 5144. https://doi.org/10.3390/rs14205144
Publicado
2026-01-27
Como Citar
Taş, T., Babacan, O., Işik, Y., Genç, T. T., & Güngör, H. (2026). A aplicação exógena de prolina pode aumentar a tolerância do sorgo doce (Sorghum bicolor (L.) Moench) sob estresse por déficit hídrico. Revista Da Faculdade De Agronomia Da Universidade De Zulia, 43(1), e264310. Obtido de https://www.produccioncientificaluz.org/index.php/agronomia/article/view/45132
Secção
Produção Vegetal