Bactérias promotoras do crescimento vegetal rizosf�rico (PGPR) em plantas de milhoz

Palavras-chave: Stenotrophomonas pavanii, Pantoea dispersa, densidade estomática, Zea mays, pastagens, rizobactérias

Resumo

As PGPR são consideradas uma alternativa sustentável para melhorar a produtividade das culturas, por sua capacidade de bioestimular o crescimento vegetal, induzir resistência sistêmica, aumentar a tolerância ao estresse abiótico, entre outros benefícios. O objetivo do estudo consistiu em avaliar o efeito das bactérias rizosféricas promotoras do crescimento vegetal (PGPR) sobre a germinação e o desenvolvimento de plantas de milho. Sete cepas obtidas do Centro de Pesquisa Biotecnológica (CEB) da Universidade Estadual Península de Santa Elena, Equador, foram reativadas, inoculadas em sementes de milho e plantadas para avaliar a germinação e o desenvolvimento vegetal em duas etapas (laboratório e viveiro). As rizobactérias promoveram significativamente a germinação em até 17 %, a emergência e o crescimento inicial do milho, especialmente as espécies Stenotrophomonas pavanii e Pantoea dispersa. Além disso, as espécies P. dispersa (b) aumentaram a densidade estomática em ambas as superfícies foliares, o que pode estar associado a uma melhor eficiência fotossintética e uso de água. Em conclusão, as cepas S. pavanii e P. dispersa promovem a germinação e o crescimento do milho Azor, a análise filogenética indica agrupamentos próximos com isolados de referência por sua eficácia com potencial significativo, como (PGPR) com capacidades biotecnológicas documentadas para os gêneros Pantoea e Stenotrophomonas.

Downloads

Não há dados estatísticos.

Referências

Alonazi, M. A., Alwathnani, H. A., AL-Barakah, F. N. I., & Alotaibi, F. (2025). Native plant growth-promoting rhizobacteria containing ACC deaminase promote plant growth and alleviate salinity and heat stress in maize (Zea mays L.) plants in Saudi Arabia. Plants, 14(7), 1107. https://doi.org/10.3390/plants14071107
Amezquita-Aviles, C. F., Coronel-Acosta, C. B., Santos-Villalobos, S. D. L., Santoyo, G., & Parra-Cota, F. I. (2022). Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Biotecnia, 24(1), 15-22. https://doi.org/10.18633/biotecnia.v24i1.1353
Bresson, J., Varoquaux, F., Bontpart, T., Touraine, B., & Vile, D. (2013). The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytologist, 200(2), 558-569. https://doi:10.1111/nph.12383
Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., & Smith, D. L. (2018). Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1473. https://doi:10.3389/fpls.2018.01473
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 66. https://doi.org/10.1186/1475-2859-13-66
Bouremani, N., Cherif-Silini, H., Silini, A., Bouket, A. C., Luptakova, L., Alenezi, F. N., & Belbahri, L. (2023). Plant growth-promoting rhizobacteria (PGPR): A rampart against the adverse effects of drought stress. Water, 15(3), 418. https://doi.org/10.3390/w15030418
Danish, S., Zafar-ul-Hye, M., Mohsin, F., & Hussain, M. (2020). ACC-de aminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE, 15(4), e0230615. https://doi.org/10.1371/journal.pone.0230615
de Andrade, L. A., Santos, C. H. B., Frezarin, E. T., Sales, L. R., & Rigobelo, E. C. (2023). Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms, 11(4), 1088. https://doi.org/10.3390/microorganisms11041088
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., González, L., Tablada, M., Robledo, C. W. (2020). InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar
Eshaghi, E., Mousae, S., Hendiyani, A., Khave, A. H., & Nosrati, R. (2024). Evaluation of the potential of multi-trait PGPR isolates as inoculants for maize (Zea mays L.) growth. Iranian Journal of Microbiology, 16(6), 812. https://doi.org/10.18502/ijm.v16i6.17260
Eshaghi Gorgi, O., Fallah, H., Niknejad, Y., & Barari Tari, D. (2022). Effect of plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi inoculations on essential oil in Melissa officinalis L. under drought stress. Biologia, 77(1), 11-20. https://doi.org/10.1007/s11756-021-00919-2
Ferrante, R., Campagni, C., Vettori, C., Checcucci, A., Garosi, C., & Paffetti, D. (2024). Meta-analysis of plant growth-promoting rhizobacteria interaction with host plants: implications for drought stress response gene expression. Frontiers in Plant Science, 14, 1282553. https://doi:10.3389/fpls.2023.1282553
Guevara-López, A., Alvarado López, C. J., López-Vázquez, J. S., Cristóbal-Alejo, J., Tun-Suárez, J. M., Garruña-Hernández, R., & Ruiz-Sánchez, E. (2025). Evaluación de inoculantes microbianos en el intercambio de gases, biomasa y componentes del rendimiento de maíz criollo en suelo Leptosol de Yucatán. Biotecnia, 27, e2559. https://doi.org/10.18633/biotecnia.v27.2559
Liu, J., Zhang, J., Shi, Q., Liu, X., Yang, Z., Han, P., Li, J., Wei, Z., Hu, T., & Liu, F. (2023). The interactive effects of deficit irrigation and Bacillus pumilus inoculation on growth and physiology of tomato plant. Plants (Basel, Switzerland), 12(3), 670. https://doi.org/10.3390/plants12030670
Mareque, C., & Battistoni, F. (2025). Endophytic interaction of the plant growth-promoting strain Pantoea dispersa UYSB45 and sweet sorghum (Sorghum bicolor) plants. Plant and Soil, 515, 407-422. https://doi.org/10.1007/s11104-025-07598-x
Noumavo, P. A., Kochoni, E., Didagbé, Y. O., Adjanohoun, A., Allagbé, M., Sikirou, R., & Baba-Moussa, L. (2013). Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. American Journal of Plant Sciences, 4(5), 1013-1021. https://doi:10.4236/ajps.2013.45125
Peng, J., Ma, J., Wei, X., Zhang, C., Jia, N., Wang, X., & Wang, Z. (2021). Accumulation of beneficial bacteria in the rhizosphere of maize (Zea mays L.) grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria. Annals of Microbiology, 71(1), 40. https://doi.org/10.1186/s13213-021-01650-8
Pereira, S. I. A., Abreu, D., Moreira, H., Vega, A., & Castro, P. M. L. (2020). Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon, 6(10), e05106. https://doi.org/10.1016/j.heliyon.2020.e05106
Pérez-Pérez, R., Oudot, M., Hernández, I., Nápoles, M. C., Pérez-Martínez, S., & Sosa-Del Castillo, D. (2020). Aislamiento y caracterización de Stenotrophomonas asociada a rizosfera de maíz (Zea Mays L.). Cultivos Tropicales, 41(2), e03. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1547
Posada, A., Mejía, D., Polanco-Echeverry, D., & Cardona, J. (2021). Rizobacterias promotoras de crecimiento vegetal (PGPR): Una revisión sistemática 1990-2019. Revista de Investigación Agraria y Ambiental, 12(2), 161-178. http://portal.amelica.org/ameli/jatsRepo/130/1302302012/index.html
Quach, N. T., Nguyen, T. T. A., Vu, T. H. N., Le, T. T. X., Nguyen, T. T. L., Chu, H. H., & Phi, Q. T. (2025). Phenotypic and genomic analysis deciphering plant growth promotion and oxidative stress alleviation of Stenotrophomonas sepilia ZH16 isolated from rice. Microbiology, 94(1), 38-49. https://doi.org/10.1134/S0026261723602749
Rayyif, S. M. I., Alwan, W. N., Mohammed, H. B., Barbu, I. C., Holban, A. M., Gheorghe, I., & Mihaescu, G. (2022). Snapshot of resistance and virulence features in ESCAPE strains frequently isolated from surgical wound infections in a Romanian hospital. Revista Romana de Medicina de Laborator, 30(2), 215-226. https://doi.org/10.2478/rrlm-2022-0014
Ríos-Ruiz, W. F., Tarrillo-Chujutalli, R. E., Rojas-García, J. C., Tuanama-Reátegui, C., Pompa-Vásquez, D. F., & Zumaeta-Arévalo, C. A. (2024). The biotechnological potential of plant growth-promoting rhizobacteria isolated from maize (Zea mays L.) cultivations in the San Martin region, Peru. Plants, 13(15), 2075. https://doi:10.3390/plants13152075
Rivera-Hernández, G., Tijerina-Castro, G. D., Cortés-Pérez, S., Ferrera-Cerrato, R., & Alarcón, A. (2024). Evaluation of functional plant growth-promoting activities of culturable rhizobacteria associated to tunicate maize (Zea mays var. tunicata A. St. Hil), a Mexican exotic landrace grown in traditional agroecosystems. Frontiers in Microbiology, 15, 1478807. https://doi.org/10.3389/fmicb.2024.1478807
Serna, L. (2022). Maize stomatal responses against the climate change. Frontiers in Plant Science, 13, 952146. https://dx.doi.org/10.3389/fpls.2022.952146
Singh, P., Singh, R. K., Li, H. B., Guo, D. J., Sharma, A., Lakshmanan, P., Malviya, M. K., Song, X. P., Solanki, M. K., Verma, K. K., Yang, L. T., & Li, Y. R. (2021). Diazotrophic bacteria Pantoea dispersa and Enterobacter asburiae promote sugarcane growth by inducing nitrogen uptake and defense-related gene expression. Frontiers in Microbiology, 11, 600417. https://doi.org/10.3389/fmicb.2020.600417
Soto, J., Julio, A., Crespo, L., Borbor, G., & Borbor, V. (2016). Efecto de la inoculación de bacterias nativas en dos híbridos de maíz (Zea mays L.), provincia de Santa Elena. Revista Científica y Tecnológica UPSE, 3(2), 50-60. https://doi.org/10.26423/rctu.v3i2.154
Upadhyay, S. K., & Chauhan, P. K. (2022). Optimization of eco-friendly amendments as sustainable asset for salt-tolerant plant growth-promoting bacteria mediated maize (Zea mays L.) plant growth, Na uptake reduction and saline soil restoration. Environmental Research, 211, 113081. https://doi.org/10.1016/j.envres.2022.113081
Vera, J., Sarango, Y., Villamar, M., Ortiz, J., Sevilla-Carrasco, J., Duarte, J., & Lucas, L. (2025). Effect of herbicides on the growth of beneficial microorganisms in rhizospheric soil. Revista de la Facultad de Agronomía de la Universidad del Zulia, 42(2), e254222. https://produccioncientificaluz.org/index.php/agronomia/article/view/43831
Wahab, A., Bibi, H., Batool, F., Muhammad, M., Ullah, S., Zaman, W., & Abdi, G. (2024). Plant growth-promoting rhizobacteria biochemical pathways and their environmental impact: A review of sustainable farming practices. Plant Growth Regulation, 104(2), 637-662. https://doi.org/10.1007/s10725-024-01218-x
Waday, Y. A., Girma Aklilu, E., Bultum, M. S., Ramayya Ancha, V., & Beyene, D. (2022). Isolation and characterization of plant growth‐promoting rhizobacteria from coffee plantation soils and its influence on maize growth. Applied and Environmental Soil Science, 2022(1), 5115875. https://doi.org/10.1155/2022/5115875
Yuan, Y., Shi, Y., Liu, Z., Fan, Y., Liu, M., Ningjing, M., & Li, Y. (2023). Promotional properties of ACC deaminase-producing bacterial strain DY1-3 and its enhancement of maize resistance to salt and drought stresses. Microorganisms, 11(11), 2654. https://doi.org/10.3390/microorganisms11112654
Zhang, C., Jin, Y., Wang, J., Zhang, Y., Zhao, Y., Lu, X., & Guo, X. (2025). Analysis of stomatal characteristics of maize hybrids and their parental inbred lines during critical reproductive periods. Frontiers in Plant Science, 15, 1442686. https://doi.org/10.3389/fpls.2024.1442686
Publicado
2026-01-27
Como Citar
Soto-Valenzuela, J., Andrade-Yucailla, V., Solís-Lucas, L., Vera-Rodríguez, J., Muyudumbay, A., & Perero-Perero, A. (2026). Bactérias promotoras do crescimento vegetal rizosf�rico (PGPR) em plantas de milhoz. Revista Da Faculdade De Agronomia Da Universidade De Zulia, 43(1), e264309. Obtido de https://www.produccioncientificaluz.org/index.php/agronomia/article/view/45131
Secção
Produção Vegetal