Capacidade de emergência e crescimento inicial de plântulas de quatro leguminosas em zonas áridas sob estresse por NaCl

Palavras-chave: biomassa, crescimento, Vigna unguiculata L. Walp., Lablab purpureus L. Sweet, Clitoria ternatea L., Canavalia ensiformis L. DC.

Resumo

As leguminosas são utilizadas como forragens e adubos verdes, por fixarem o nitrogênio biologicamente. O objetivo deste estudo foi determinar a capacidade de emergência e o crescimento inicial de quatro espécies de leguminosas tratadas com diferentes concentrações de NaCl-estresse. O experimento foi instalado em delineamento inteiramente casualizado com arranjo fatorial, onde o primeiro fator foram as quatro espécies de leguminosas (Vigna unguiculata L. Walp., Lablab purpureus L. Sweet, Clitoria ternatea L. y Canavalia ensiformis L. DC.)  e o segundo fator foram as concentrações de NaCl (0,25, 50, e 75 mM) com 16 tratamentos e quatro repetições. As variáveis avaliadas foram taxa e porcentagem de emergência, comprimento de caule e raiz, massa fresca e seca de caule+folhas e raiz, comprimento de caule e raiz, diâmetro do caule e relação massa seca de caule+folhas e massa seca de raízes (equilíbrio da planta). Os resultados mostraram que todas as variáveis expressaram diferenças significativas entre as espécies, NaCl e a interação espécie × NaCl. Observou-se uma resposta diferencial entre as leguminosas ao estresse por NaCl. As espécies mais tolerantes ao NaCl foram Vigna unguiculata e Canavalia ensiformis apresentaram maior tolerância em relação a Lablab purpureus e Clitoria ternatea.

Downloads

Não há dados estatísticos.

Referências

Acosta-Motos, J.R., Ortuño, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M.J., & Hernandez, J.A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7, 18. https://doi.org/10.3390/agronomy7010018
Al-huraby, A.I. & Bafeel, S.O. (2022). The effect of salinity stress on the Phaseolus vulgaris L. plant. African Journal of Biological Sciences, 4,1, 94-107. doi: 10.33472/ AFJBS.4.1.2021.94-107.
Can-Chulim, A.A., Ramírez-Guerrero, L.G., Ortega-Escobar H.M., Cruz-Crespo, E., Flores-Román, D., Sánchez-Bernal E.I., & Madueño-Molina, A. (2014). Germinación y crecimiento de plántulas de Phaseolus vulgaris L. en condiciones de salinidad. Revista Mexicana de Ciencias Agrícolas, 5(5), 753-763. https://doi.org/10.29312/remexca.v5i5.898
Daniel, A.I., Fadaka, A.O., Gokul, A., Bakare, O.O., Aina, O., Fisher, S., Burt, A.F., Mavumengwana, V., Keyster, M., & Klein, A. (2022). Biofertilizer: The future of food security and food safety. Microorganisms, 10, 1220. https://doi.org/10.3390/ microorganisms10061220
Dehnavi, A.R., Zahedi, M., Ludwiczak, A., Cardenas-Perez, S., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of Sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10, 859. https://doi.org/10.3390/agronomy10060859
Deng, X., Ji, L., Wang, R., Liu, X., Yang, S., Guan, P., Wang, J. (2019). Response of seed germination and physiological mechanism of Vigna angularis and Dolichos lablab to salt stress. Chinese Journal of Eco-Agriculture, 27(8), 1218-1225. doi:10.13930/j.cnki.cjea.190227
Fatokun, K., Beckett, R.P., & Varghese, B. (2022). A comparison of water imbibition and controlled deterioration in five orthodox species. Agronomy, 12, 1486. https://doi.org/10.3390/ agronomy12071486
García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía de la Universidad Nacional Autónoma de México. Ciudad de México. 97 p. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1
Grigore, M.N. & Vicente, O. (2023). Wild halophytes: Tools for understanding salt tolerance mechanisms of plants and for adapting agriculture to climate change. Plants, 12, 221. https://doi.org/10.3390/ plants12020221
Gul, Z., Tang, Z.H., Arif, M., & Ye, Z. (2022). An Insight into Abiotic Stress and Influx Tolerance Mechanisms in Plants to Cope in Saline Environments. Biology, 11, 597. https://doi.org/10.3390/ biology11040597
Hasanuzzaman, M., Zhou, M., & Shabala, S. (2023). How does stomatal density and residual transpiration contribute to osmotic stress tolerance? Plants, 12, 494. https://doi.org/10.3390/ plants12030494
Ibrahim, E.A.A. (2019). Fundamental Processes Involved in Seed Priming. In: Hasanuzzaman, M., Fotopoulos, V. (eds). Priming and pretreatment of seeds and seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_4
Khan, M., Ali, S., Al Azzawi, T.N.I., Saqib, S., Ullah, F., Ayaz, A., & Zaman, W. (2023). The key roles of ROS and RNS as a signaling molecule in plant-microbe interactions. Antioxidants, 12, 268. https://doi.org/10.3390/ antiox12020268
Li, Y., Liang, Y., Liu, M., Zhang, Q., Wang, Z., Fan, J., Ruan, Y., Zhang, A., Dong, X., Yue, J., & Li. C. (2022). Genome-wide association studies provide insights into the genetic architecture of seed germination traits in maize. Frontiers in Plant Science, 13:930438. doi: 10.3389/fpls.2022.930438
Li, B., Tester, M., & Gilliham, M. (2017). Chloride on the move. Trends in Plant Science, 22, 3, 236-248, https://doi.org/10.1016/j.tplants.2016.12.004.
Little, T.M. y Hills, F.J. (1989). Métodos estadísticos para la investigación en la agricultura. México. Edit. Trillas. 270 p.
Maguire, J.D. (1962). Speed of germination-aid in selection and evaluation for seedling emergences and vigor. Crop Science, 2, 176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x
Mathesius, U. (2022). Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. Journal of Plant Physiology, 276, 153765, https://doi.org/10.1016/j.jplph.2022.153765.
Mohanavelu, A., Naganna, S.R., & Al-Ansari, N. (2021). Irrigation induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture, 11, 983. https://doi.org/10.3390/agriculture 11100983
Mubushar, M., El-Hendawy, S., Tahir, M.U., Alotaibi, M., Mohammed, N., Refay, Y., & Tola, E. (2022). Assessing the suitability of multivariate analysis for stress tolerance indices, biomass, and grain yield for detecting salt tolerance in advanced spring wheat lines irrigated with saline water under field conditions. Agronomy, 12, 3084. https://doi.org/ 10.3390/agronomy12123084
Muktadir, M.A., Adhikari, K.N., Merchant, A., Belachew, K.Y., Vandenberg, A., Stoddard, F.L., & Khazaei, H. (2020). Physiological and biochemical basis of faba bean breeding for drought adaptation- A Review. Agronomy, 10, 1345. https://doi.org/10.3390/agronomy10091345
Murillo-Amador, B., Yamada, S., Yamaguchi, T., Rueda-Puente, E.O. Ávila-Serrano, N.Y., García-Hernández, J.L., López-Aguilar, D.R., Troyo-Diéguez, E., & Nieto-Garibay, A. (2007). Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal Agronomy Crop Science, 193:413-421. doi.org/10.1111/j.1439-037X.2007.00273.x
Narejo, G.A., Mirbahar, A.A., Yasin, S., Sirohi, M.H., & Saeed R. (2023). Effect of hydro and KNO3 priming on seed germination of cotton (Gossypium hirsutum L.) under gnotobiotic conditions. Journal of Plant Growth Regulation, 42, 1592-1603. https://doi.org/10.1007/s00344-022-10644-y
Nachshon, U. (2018). Cropland soil salinization and associated hydrology: Trends, processes and examples. Water, 8, 1030. https://doi.org/10.3390/w10081030
Negacz, K., Malek, Ž., Vos, A.D., & Vellinga, P. (2022). Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 203, 104775, https://doi.org/10.1016/j.jaridenv.2022.104775.
Praxedes, S.S.C., da Silva Sá, F.V., Neto, M.F., Loiola, A.T., Reges, L.B.L., Jales, G.D., & de Melo, A.S. (2020). Tolerance of seedlings traditional varieties of cowpea (Vigna unguiculata (L.) Walp.) to salt stress. Semina: Ciências Agrárias, Londrina, 41(5 suplemento 1), 1963-1974.
Ravelombola, W., Shi, A., Weng, Y., Mou, B., Motes, D., Clark, J., Chen, P., Srivastava, V., Quin, J., Dong, L., Yang, W., Bhattarai, G., & Sugihara, Y. 2018. Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp.) at germination and seedling stages. Theoretical and Applied Genetics, 131, 79-91, https://doi.org/10.1007/s00122-017-2987-0
Ruiz-Ramírez, S., Valdés-Oyervides, A., Facio-Parra, F., y Arce-González, L. (2012). Efecto de diferentes niveles de salinidad en la germinación y vigor de semillas de cinco gramíneas forrajeras. Agraria, 9, 1, 7-13. https://revista.uaaan.edu.mx/
Shelden, M.C. & Munns, R. (2023). Crop root system plasticity for improved yields in saline soils. Frontiers in Plant Science, 14, 1120583. doi: 10.3389/fpls.2023.1120583Shel
TIBCO Software Inc. (2018). Statistica (data analysis software system), version 13. http://tibco.com.
Xu, J., Li, Y., Wang, S., Wang, Q., & Ding, J. (2020). Shear strength and mesoscopic character of undisturbed loess with sodium sulfate after dry-wet cycling. Bulletin Bulletin of Engineering Geology and the Environment, 79,1523-1541. https://doi.org/10.1007/s10064-019-01646-4
Publicado
2023-06-02
Como Citar
Ruiz-Espinoza, F., Reyes-Perez, J., Beltrán-Morales, F., Murillo-Amador, B., Rodríguez-Ortiz, J., & Arce-Amézquita, P. (2023). Capacidade de emergência e crescimento inicial de plântulas de quatro leguminosas em zonas áridas sob estresse por NaCl. Revista Da Faculdade De Agronomia Da Universidade De Zulia, 40(2), e234020. Obtido de https://www.produccioncientificaluz.org/index.php/agronomia/article/view/40247
Secção
Produção Vegetal