Instrutura da agropaisagem y dano causado por esquilos vermelhos às vagens de cacau

Palavras-chave: biomassa, conectividade, Mérida, Notosciurus granatensis, sombra, Theobroma cacao, Venezuela

Resumo

O cacau é um recurso estratégico porque abriga alta biodiversidade e é uma fonte confiável de divisas. En Venezuela su productividad se ve afectada principalmente por hongos y squilos. O objetivo é avaliar a influência da estrutura do cultivo de cacau no nível do dano causado por esquilos às mazorcas. A estrutura da vegetação é definida em 15 fazendas midiendo a biomasa do árbol de cacau, a magnitude da cobertura das árboles de sombra, o número de cultivos associados, a presença de árboles frutas alternativas e o tipo de sucessão ecológica presente no entorno. Foi calculado el % de daño e foram utilizadas testes não paramétricas para processar os dados. El daño fue mayor en cultivos com menor cobertura de sombra, maior número de cultivos associados e de frutas alternativas. Os squilos ussaram as bagas de cacau de manera oportunista, pero prefirieron outros frutos. Conclui-se que as vainas podem ser o alimento complementar para los squilos na medida em que a plantação de cacau é mais completa e tem uma conexão com o bosque. A cobertura de sombra não influenciou diretamente nos squilos, mas é crucial para as aves depredadoras que são mais sensíveis às perturbações.

Downloads

Não há dados estatísticos.

Referências

Alvarenga, C. A. and Talamoni, S. (2006). Foraging behaviour of the Brazilian squirrel Sciurus aestuans (Rodentia, Sciuridae). Acta Theriologica, 51(1), 69-74.
Alves de Sousa Silva, A., Del Valle-Álvarez, M., Mariano-Neto, E. & Righetto-Cassano, C. (2018). Is shadier better? The effect of agroforestry management on small mammal diversity. Biotropica, 00, 1-10.
Badrie, N., Bekele, F., Sikora, E. & Sikora, M. (2015). Cocoa agronomy, quality, nutritional, and health aspects. Critical Reviews in Food Science and Nutrition, 55, 620-659. https://doi.org/10.1080/10408398.2012.669428.
Canavelli S. B., Branch L. C., Cavallero O., González C. & Zaccagnini M. E. (2014). Multi-level analysis of bird abundance and damage to crop fields. Agriculture, Ecosystems and Environment, 197, 128-136. https://doi.org/10.1016/J.AGEE.2014.07.024.
Cassano, C., Kierulff, M. C. M. & Chiarello, A. G. (2011). The cacao agroforests of the Brazilian Atlantic Forest as habitat for the endangered maned sloth Bradypus torquatus. Mammalian Biology, 76, 243-250. https://doi.org/10.1016/j.mambio.2010.06.008.
Craig, T. and Gese, E. (2013). Influence of vegetation structure on the small community in a shortgrass prairie ecosystem. Acta Theriologica, 58, 55-61. https://doi.org/10.1007/s13364-012-0098-5.
Daghela, H. B., Fotio, D., Missoup, A. D. & Vidal, S. (2013). Shade Tree Diversity, Cocoa Pest Damage, Yield Compensating Inputs and Farmers’ Net Returns in West Africa. Plos One, 8(3), 1-9. https://doi.org/10.1371/journal.pone.0056115.
Engelhardt S. C. and Weladji, R. B. (2011). Effect of levels of human exposure on flight initiation distance and distance to refuge in foraging eastern gray squirrels (Sciurus carolinensis). Canadian Journal of Zoology, 89, 823-830. https://doi.org/10.1139/Z11-054.
Engel, L. D., Carlen, E. J., Losos, J. B. & Winchell, K. M. (2020). Eastern gray squirrels (Sciurus carolinensis) differ in abundance and response to humans across urban habitats of St. Louis. Urban Naturalist, 33, 1-16.
Ferreira, T. and Dasband, W. (2012). Imagej user guide. Revised edition. 187 p.
Flaherty, S., Patenaude, G., Close, A. & Lurz, P. W. (2012). The impact of forest stand structure on red squirrel habitat use. Forestry, 85(3), 437-444. https://doi.org/10.1093/forestry/cps042.
Garcés-Restrepo, M. F. and Saavedra-Rodríguez C. A. (2013). Densidad de ardilla roja (Sciurus granatensis) en hábitats con diferentes coberturas vegetales en los Andes de Colombia. Mastozoología Neotropical, 20, 381-386.
Gidoin C., Babin R., Bagny Beilhé L., Barbu C., Gosme M., Jeuffroy M-H., Ngo Bieng M. A., Valantin-Morison M. and Martijn ten Hoopen, G. (7-10 September 2015). Multi-scale studies of the relationships between cropping structure and pest and disease regulation services. 5th International Symposium for Farming Systems Design. Montpellier, France.
Gough, C. M., Atkins, J. W., Fahey, R. T., & Hardiman, B. S. (2019). High rates of primary production in structurally complex forests. Ecology. 100(10), 1-6.
Holloway G. L., Smith W. P., Halpern C. B., Gitzen R. A., Maguire C. C. & West S. D. (2012). Influence of forest structure and experimental green-tree retention on northern flying squirrel (Glaucomys sabrinus) abundance. Forest Ecology and Management, 285, 187-194. https://doi.org/10.1016/j.foreco.2013.10.026.
Holloway, G. and Malcolm, J. (2007). Nest-tree used by Northern and Southern flying squirrels in Central Ontario. Journal of Mammalogy, 88(1), 226-233. https://doi.org/10.1644/05-MAM-A-368R2.1.
Huber, O., Oliveira-Miranda, M., Rodríguez, J. P., Rojas-Suárez, F. & Giraldo-Hernández, D. (2010). Libro rojo de los ecosistemas terrestres de Venezuela. Provita.
Huy, B., Poudel, K., Kralicek, K., Dinh Hung, N., Van Khoa, P., Tan Phương, V. & Temesgen, H. (2016). Allometric Equations for Estimating Tree Aboveground Biomass in Tropical Dipterocarp Forests of Vietnam. Forests, 7, 1-19. https://doi.org/10.1016/j.foreco.2016.10.021.
IBM Corp. (2011). IBM SPSS Statistics for windows, Version 20.0. Armonk, NY: IBM Corp.
Kittendorf, A. and Danzer, B. (2021). Urban fox squirrels exhibit habituation to humans but respond to stimuli from natural predators. Ethology, 9,697-709. https://doi.org/doi:10.1111/eth.13206.
López N., Flores E., Castillo J., & Montalvan O. (2014). Plagas en Cacaotales. Municipio Siuna. Ciencia e Interculturalidad. 14, 106-114.
Mäkeläinen, S., de Knegt, H., Ovaskainen, O. & Hanski, I. (2016). Home-range patterns and movements of the Syverian flying squirrel in urban forests: effects of the habitat composition and connectivity. Movement Ecology, 14, 4-13.
Milosavljevic I., Esser A. D. & Cowder J. W. (2016). Effects of environmental and agronomic factors on soil-dwelling pest communities in cereal crops. Agriculture, Ecosystems and Environment, 225, 192-198. https://doi.org/10.1016/j.agee.2016.04.006.
Mollineau F., Bekele F. & García G. (2008). The Neo-tropical red squirrel (Sciurus granatensis) as a pest of cacao (Theobroma cacao L.) in the International Cacao Genebank, Trinidad. Tropical Agriculture Trinidad. 85, 1-12.
Monge, J. and Hilje, L. (2006). Hábitos alimenticios de la ardilla (Sciurus variegatoides), (Rodentia: Sciuridae). Nicoya, Costa Rica. Revista de Biología Tropical, 54(2), 681-686.
Portillo, E., Martínez, E., Araujo, F., Parra, R. y Esparza, D. (1995). Diagnóstico técnico-agronómico para el cultivo de cacao (Theobroma cacao L.) en el Sur del Lago de Maracaibo. Revista de la Facultad de Agronomía Universidad del Zulia. 12, 151-166.
Potash, A., Conner, M. & McClleery, R. (2019). Vertical and horizontal vegetation cover synergistically shape prey behavior. Animal Behaviour, 152, 19-44. https://doi.org/10.1016./j.anbehav.2019.04.007.
Reher, S., Dausmann, K., Warnecke, L. & Turner, J. (2016). Food availability affects habitat use of Eurasian squirrels (Sciurus vulgaris) in a semi-urban environment. Journal of Mammalogy, 97(6), 1543-1554. https://doi.org/10.1093/jmammal/gyw105.
Sagorski, M. E. and Swihart, R. K. (2021). Raptor resource use in agroecosystems: cover crops and definitions of availability matter. Avian Conservation and Ecology, 16, 1-14. https://doi.org/10.5751/ACE01719-160101.
Silva-Ferreira, A., Peres, C., Dodonov, P., & Righetto-Cassano, C. (2020). Multi-scale mammal responses to agroforestry landscapes in the Brazilian Atlantic Forest: the conservation value of forest and traditional shade plantations. Agroforestry Systems. 94: 2331-2341. https://doi.org/10.1007/s10457-020-00553-y.
Smith, R. H. and Nott H. M. (1988). Rodent damage to cocoa in Equatorial Guinea. FAO Plant Protection Bulletin. 36, 19-124.
Sonwa D. J., Weise, S. F., Schroth, G., Janssens, M. J. & Shapiro, H.Y. (2018). Structure of cocoa farming systems in west and central Africa: a review. Agroforestry Systems, 93(5), 2009-2025. https://doi.org/10.1007/s10457-018-0306-7.
Tinajero, R., Barragán, F. & Chapa-Vargas, L. (2017). Raptor functional diversity in scrubland-agricultural landscapes of Northern-Central-Mexican dryland environments. Tropical Conservation Science, 10: 1-18. https://doi.org/10.1177/1940082917712426.
Uchida, K. (2019). The town squirrel and the country squirrel: multiple behavioral comparisons I Eurasian red squirrel between two environments. Ph. D. Thesis. Scholl of Environmental Science. University of Hokaido, Japan. https://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/83720/1/Kenta_UCHIDA.pdf
Uchida, K., Susuki, K. K., Shimamoto, T., Yanagawa, H. & Koizumi, I. (2017). Escaping height in a tree represents a potential indicator of fearfulness in arboreal squirrels. Mammal Study, 42, 39-43.
Vivas L. 1992. Los Andes Venezolanos. Academia Nacional de La Historia. Italgrafica S.R.L.
Verbeeck, H., Bauters, M., Toby, J., Schenkin, A., Disney, M.I., & Calders, K. (2019). Time for a Plant Structural Economics Spectrum. Frontiers in Forests and Global Change. 2, 1-5. https://doi.org/10.3389/ffgc.2019.00043.
Walter, J. Stovall, A., & Atkins, J. (2021). Vegetation structural complexity and biodiversity in the Great Smoky Mountains. Ecosphere. 12(3), 1-15. https://doi.org/10.1002/ecs2.3390.
Warren J. and Emmandie, D. (1993). Rodent resistance in cacao, Theobroma cacao L. Tropical Agriculture, 70, 286-288.
Wilson, J.A., Kelt, D. & Van Vuren, D. (2008). Home range and activity of the northern flying squirrels (Glaucomys sabrinus) in the Sierra Nevada. The Southwestern Naturalist, 53(1), 21-28.
Publicado
2022-11-15
Como Citar
Molina, M., & Mazón, M. (2022). Instrutura da agropaisagem y dano causado por esquilos vermelhos às vagens de cacau. Revista Da Faculdade De Agronomia Da Universidade De Zulia, 39(4), e223951. Obtido de https://www.produccioncientificaluz.org/index.php/agronomia/article/view/39093
Secção
Produção Vegetal