Microbiota fúngica de palha de cana-de-açúcar e a sua capacidade de produzir enzimas hidrolítica

  • Nadia G. Mendoza-Infante Colegio de Postgraduados-Campus Córdoba, Carretera Federal Córdoba-Veracruz Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, 94946 Veracruz, México. https://orcid.org/0000-0002-7933-4219
  • Héctor Debernardi de la Vequia Colegio de Postgraduados-Campus Córdoba, Carretera Federal Córdoba-Veracruz Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, 94946 Veracruz, México. https://orcid.org/0000-0002-5417-5282
  • Juan V. Hidalgo-Contreras Colegio de Postgraduados-Campus Córdoba, Carretera Federal Córdoba-Veracruz Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, 94946 Veracruz, México. https://orcid.org/0000-0002-4300-7777
  • Violeta Múgica-Álvarez Química Aplicada, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo 180, 02200 México, DF, México https://orcid.org/0000-0003-2394-041X
  • Ricardo Hernández-Martínez CONACYT-Colegio de Postgraduados-Campus Córdoba, Carretera Federal Córdoba-Veracruz Km 348, Congregación Manuel León, Municipio Amatlán de los Reyes, 94946 Veracruz, México https://orcid.org/0000-0002-3604-4668
Palavras-chave: Saccharum officinarum, Trichoderma, fungos, celulases, xilanases

Resumo

A microbiota presente na palha da cana de açúcar (Saccharum officinarum L.) pode ter benefícios para a produção de culturas sustentáveis, e também pode ser utilizada para o desenvolvimento de processos alternativos para produzir moléculas de interesse industrial e valorização da biomassa e dos resíduos não explorados. Portanto, o objectivo do presente trabalho foi o isolamento da microbiota fúngica presente na palha da cana de açúcar (CP 72-2082) e a sua capacidade de produzir enzimas hidrolíticas. A microbiota fúngica foi isolada por amostragem uma vez por mês durante quatro meses a palha nos campos do moinho de açúcar "El Potrero" no estado de Veracruz, México, e o solo também foi amostrado para determinar o efeito da palha chili sobre o conteúdo de matéria orgânica. Além disso, a capacidade das estirpes para produzir xilanases e celulases foi determinada numa placa de Petri, utilizando carboximetilcelulose e xilan de bétula como substratos. Nas quatro amostragens realizadas, foram isoladas 34 estirpes, identificando o género Trichoderma em todas elas, Fusarium em três delas e Aspergillus e Penicillum em duas delas. Os resultados indicam que se a palha da cana de açúcar for reincorporada em solos onde a cana de açúcar é cultivada, pode ter um impacto benéfico. Além disso, 22 estirpes isoladas mostraram a capacidade de produzir xilanases e celulases. O teor de matéria orgânica nos solos com resíduos de culturas triturados e não triturados mostrou que a pimenta não apresenta um benefício para o solo, mas pode contribuir com microbiota fúngica benéfica para vários fins.

Downloads

Não há dados estatísticos.

Referências

Adesina, F. & Onilude, A. (2013). Isolation, identification and screening of xylanase and glucanase-producing microfungi from degrading wood in Nigeria. African Journal of Agricultural Research, 8(34), 4414-4421. https://cutt.ly/Inh57Dh
Agudelo, J, Merchán, Z., Zapata, N., y Muñoz, O. (2013). Evaluación de las enzimas celulolíticas producidas por hongos nativos mediante fermentación en estado sólido (SSF) utilizando residuos de cosecha de caña de azúcar. Revista Colombiana de Biotecnología, 15(1), 108-117. https://cutt.ly/2nh54yM
Armanhi, J., de Souza, R., Damasceno, N., de Araújo, L., Imperial, J. & Arruda, P. (2018). A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome. Frontiers in Plant Science, 8, 2191. https://doi.org/10.3389/fpls.2017.02191
Barnett, H. & Hunter, B. (1972). Illustrated genera of imperfect fungi. Illustrated genera of imperfect fungi (3rd ed). Burges Publishing Company.
Batista-García, R., Balcázar-López, E., Miranda-Miranda, E., Sánchez-Reyes, A., Cuervo-Soto, L., Aceves-Zamudio, D. & Folch-Mallol, J. (2014). Characterization of lignocellulolytic activities from a moderate halophile strain of Aspergillus caesiellus isolated from a sugarcane bagasse fermentation. PLoS One, 9(8), e105893. https://doi.org/10.1371/journal.pone.0105893
Bertonha, L., Neto, M., Garcia, J., Vieira, T., Castoldi, R., Bracht, A. & Peralta, R. (2018). Screening of Fusarium sp. for xylan and cellulose hydrolyzing enzymes and perspectives for the saccharification of delignified sugarcane bagasse. Biocatalysis and Agricultural Biotechnology, 16, 385-389. https://doi.org/10.1016/j.bcab.2018.09.010
Borges, J., Barrios, M., Sandoval, E., Bastardo, Y. & Márquez, O. (2012). Características físico-químicas del suelo y su asociación con macroelementos en áreas destinadas a pastoreo en el estado Yaracuy. Bioagro, 24(2), 121-126. https://cutt.ly/jnh53mK
Bojórquez-Serrano, J., Castillo Pacheco, L., Hernández Jiménez, A., García Paredes, J. & Madueño-Molina, A. (2015). Cambios en las reservas de carbono orgánico del suelo bajo diferentes coberturas. Cultivos Tropicales, 36(4), 63-69. https://cutt.ly/jnh59Yk
Camassola, M. & Dillon, A. (2010). Cellulases and xylanases production by Penicillium echinulatum grown on sugar cane bagasse in solid-state fermentation. Applied Biochemistry and Biotechnology, 162(7), 1889-1900. https://doi.org/10.1007/s12010-010-8967-3
Cervantes-Preciado, J., Milanés-Ramos, N. & Castillo, M. (2019). Evaluación de 11 híbridos de caña de azúcar (Saccharum spp.) en la region central de Veracruz, México. AGROProductividad, 12(3), 69-74. https://doi.org/10.32854/agrop.v0i0.1085
Comité Nacional para el desarrollo sustentable de la caña de azúcar (CONADESUCA). 2019. Comparativo de días de zafra respecto al primer estimado de los ingenios, Ciudad de México: Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar. Fecha de consulta: agosto 2020.
Dela-Cueva, F., De Torres, R., de Castro, A., Mendoza, J. & Balendres, M. (2019). Susceptibility of sugarcane to red rot caused by two Fusarium species and its impact on stalk sugar level. Journal of Plant Pathology, 101(3). https://doi.org/10.1007/s42161-019-00253-2
Dhakar, K., Sharma, A. & Pandey, A. (2014). Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India. World Journal of Microbiology and Biotechnology, 30(4), 1315-1324. https://doi.org/10.1007/s11274-013-1545-4
De Souza, R., Okura, V., Armanhi, J., Jorrín, B., Lozano, N., Da Silva, M. & Arruda, P. (2016). Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports, 6(1), 1-15. https://doi.org/10.1038/srep28774
Deshmukh, R., Dange, S., Jadhav, P., Deokule, S. & Patil, N. (2013). Studies on the mycoflora in the rhizosphere of sugarcane (Saccharum officinarum L.). International Journal of Bioassays, 2(4), 674-676. https://cutt.ly/enh50ew
Elias, F., Woyessa, D. & Muleta, D. (2016). Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia. International Journal of Microbiology, 2016, 1-11. https://doi.org/10.1155/2016/5472601
Farinas, C. (2015). Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renewable and Sustainable Energy Reviews, 52, 179-188. https://doi.org/10.1016/j.rser.2015.07.092
Florencio, C., Couri, S. & Farinas, C. (2012). Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme research, 2012. https://doi.org/10.1155/2012/793708
Florencio, C., Cunha, F., Badino, A. & Farinas, C. (2015). Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains. Applied Biochemistry and Biotechnology, 175(3), 1389-1402. https://doi.org/10.1007/s12010-014-1357-5
Gong, W., Zhang, H., Liu, S., Zhang, L., Gao, P., Chen, G. & Wang, L. (2015). Comparative secretome analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum during solid-state fermentation. Applied Biochemistry and Biotechnology, 177(6), 1252-1271. https://doi.org/10.1007/s12010-015-1811-z
Graham, M., Haynes, R. & Meyer, J. (2002). Soil organic matter content and quality: effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biology and Biochemistry, 34(1), 93-102. https://doi.org/10.1016/S0038-0717(01)00160-2
Hsuan, H., Salleh, B. & Zakaria, L. (2011). Molecular identification of Fusarium species in Gibberella fujikuroi species complex from rice, sugarcane and maize from Peninsular Malaysia. International Journal of Molecular Sciences, 12(10), 6722-6732. https://doi.org/10.3390/ijms12106722
Joshi, D., Singh, P., Singh, A., Lal, R. & Tripathi, N. (2016). Antifungal potential of metabolites from Trichoderma sp. against Colletotrichum falcatum went causing red rot of sugarcane. Sugar Tech, 18(5), 529-536. https://doi.org/10.1007/s12355-015-0421-y
Kannangara, S. & Dharmarathna, R. M. (2017). Isolation, identification and characterization of Trichoderma species as a potential biocontrol agent against Ceratocystis paradoxa. The Journal of Agricultural Science, 12(1): 51-62. http://doi.org/10.4038/jas.v12i1.8206
Kaushal, R., Sharma, N. & Tandon, D. (2012). Cellulase and xylanase production by co-culture of Aspergillus niger and Fusarium oxysporum utilizing forest waste. Turkish Journal of Biochemistry, 37(1). http://doi.org/10.5505/tjb.2012.43434
Lacerda, L., Gusmão, L. & Rodrigues, A. (2018). Diversity of endophytic fungi in Eucalyptus microcorys assessed by complementary isolation methods. Mycological Progress, 17(6), 719-727. https://doi.org/10.1007/s11557-018-1385-6
Lizardi-Jiménez, M., Ricardo-Díaz, J., Quiñones-Muñoz, T., Hernández-Rosas, F. & Hernández-Martínez, R. (2019). Fungal strain selection for protease production by solid-state fermentation using agro-industrial waste as substrates. Chemical Papers, 73(10), 2603-2610. https://doi.org/10.1007/s11696-019-00814-w
Mahlanza, T., Rutherford, R., Snyman, S. & Watt, M. (2013). In vitro generation of somaclonal variant plants of sugarcane for tolerance to Fusarium sacchari. Plant cell reports, 32(2), 249-262. https://doi.org/10.1007/s00299-012-1359-0
Marques, N., de Cassia Pereira, J., Gomes, E., da Silva, R., Araújo, A., Ferreira, H.& Bocchini, D. (2018). Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Industrial Crops and Products, 122, 66-75. https://doi.org/10.1016/j.indcrop.2018.05.022
Martínez, L., Martínez, S. & Cuevas, R. (2013). Efecto de la tierra de diatomeas en las propiedades químicas del suelo en el cultivo de maíz (Zea mays, L.). RIAA, 4(2), 13-26. https://doi.org/10.22490/21456453.984
Panagiotou, G., Kekos, D., Macris, B., & Christakopoulos, P. (2003). Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial crops and products, 18(1), 37-45. https://doi.org/10.1016/S0926-6690(03)00018-9
Quiroz-Guerrero, I. & Pérez, A. (2013). Vinaza y compost de cachaza: efecto en la calidad del suelo cultivado con caña de azúcar. Revista Mexicana de Ciencias Agrícolas, 4(SPE5), 1069-1075. https://cutt.ly/Tnh5nVC
Rahnama, N., Mamat, S., Shah, U., Ling, F., Rahman, N. & Ariff, A. (2013). Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. BioResources, 8(2), 2881-2896. https://doi.org/10.15376/biores.8.2.2881-2896
Ramírez-Lozano, D., Soria, A., Gutiérrez, B., Baptista, R., Garza, Y. & Gaona Lozano, J. (2016). Producción de enzimas celulolíticas a partir de hongos aislados de muestras ambientales de Cuatro Ciénegas, Coahuila. Mexican Journal of Biotechnology, 1(1), 157-164. https://cutt.ly/Ynh5z7w
Rivera-Cruz, M., Magaña M. y Trujillo A. (2017). Modificaciones en materia orgánica y actividad enzimática del suelo por fuego usado en la quema de caña de azúcar. p. 393-397. En: Seguridad Alimentaria: Aportaciones Científicas y Agrotecnológicas. Primera edición.
Romão-Dumaresq, A., Dourado, M., Fávaro, L., Mendes, R., Ferreira A., & Araújo, W. (2016). Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PloS one,11(7), e0158974. https://doi.org/10.1371/journal.pone.0158974
Rozas, H., Echeverria, H., & Angelini, H. (2011). Niveles de carbono orgánico y ph en suelos agrícolas de las regiones pampeana y extrapampeana Argentina. Revista Ciencia del Suelo, 29, 29-37. https://cutt.ly/Znh5kAM
Saif, F., Yaseen, S., Alameen, A., Mane, S. & Undre, P. (2020). Identification of Penicillium Species of Fruits Using Morphology and Spectroscopic Methods. Journal of Physics: Conference Series, 1644(1), 012019. https://doi.org/10.1088/1742-6596/1644/1/012019
Tegene, S., Dejene, M., Terefe, H., Tegegn, G., Tena, E. & Ayalew, A. (2021). Evaluation of native Trichoderma isolates for the management of sugarcane smut (Ustilago scitaminea) in sugar plantations of Ethiopia. Cogent Food & Agriculture, 7(1), 1872853. https://doi.org/10.1080/23311932.2021.1872853
Upadhyay, M., Awasthi, A. & Joshi, D. (2020). Explorando la eficacia del biocontrol de Trichoderma spp. contra Fusarium sacchari, el agente causal de la marchitez de la caña de azúcar. Biotecnología Vegetal, 20(3), 237-247. https://cutt.ly/Mnh5jhI
Yarce, C. & Castillo, J. (2014). Validación no exhaustiva del método analítico de Walkley–Black, para la determinación de materia orgánica en suelos por espectrofotometría de UV-VIS. Ingenium, 8(19), 37-46. https://cutt.ly/Dnh5g03
Youssef, M., Saber, W., El-Taher, E., & El daiem, A. (2016). Isolation and Identification of the Highly Cellulolytic and P-Solubilizing Fungi. Journal of Environmental Sciences, 45(1), 75-84. https://cutt.ly/Gnh5fiL
Zhang, F., Zhao, X. & Bai, F. (2018). Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresource Technology, 247, 676-683. https://doi.org/10.1016/j.biortech.2017.09.126
Publicado
2021-12-22
Como Citar
Mendoza-Infante, N. G., Debernardi de la Vequia, H., Hidalgo-Contreras, J. V., Múgica-Álvarez, V., & Hernández-Martínez, R. (2021). Microbiota fúngica de palha de cana-de-açúcar e a sua capacidade de produzir enzimas hidrolítica. Revista Da Faculdade De Agronomia Da Universidade De Zulia, 39(1), e223908. Obtido de https://www.produccioncientificaluz.org/index.php/agronomia/article/view/37489
Secção
Produção Vegetal