Functional Telerehabilitation System in Interactive Virtual Environments and Biomedical Technologies. / Sistema de telerehabilitación funcional en entornos virtuales interactivos y tecnologías biomédicas.

  • Liliana RODRÍGUEZ TOVAR Antonio José de Sucre Corporación Universitaria. Colombia.
  • Javier E. SIERRA Universidad de Sucre. Colombia
  • Claudia PACHÓN FLÓREZ Antonio José de Sucre Corporación Universitaria. Colombia.
  • Meryene BARRIOS BARRETO Antonio José de Sucre Corporación Universitaria. Colombia



This article shows the development and implementation of a functional telerehabilitation system by using interactive virtual environments and biomedical technologies in patients with cerebral palsy sequelae, with limited upper and lower limb movements. The system facilitates therapeutic intervention with telerehabilitation through video games developed in Scratch®, by means of Kinect as an interface for acquiring movements. By developing a video game in an easily configured programming language, therapists can change and adjust the challenges of each therapeutic intervention in an interactive, friendly and funny way, according to progress, and motivating the patient to continue with his evolution. Results show improvement in children with cerebral palsy, with movement limitations of their upper or lower limbs.


En este artículo se muestra el desarrollo e implementación de un sistema de telerehabilitación funcional empleando entornos virtuales interactivos y tecnologías biomédicas en pacientes con secuelas de parálisis cerebral con limitación en los movimientos de las extremidades superiores e inferiores. El sistema facilita la intervención terapéutica empleando la telerehabilitación a través de videojuegos desarrollados en Scratch®, con el uso de Kinect como interfaz de adquisición de movimientos. Al desarrollar un videojuego en un lenguaje de programación de fácil configuración, permite que los terapeutas puedan cambiar y ajustar los retos de cada intervención terapéutica de forma interactiva, amigable y divertida, acorde al progreso y motivando al paciente a continuar con su evolución. Los resultados muestran mejora en niños con parálisis cerebral, con limitaciones en movimiento a nivel de miembros superiores o inferiores.


ARLATI, S., KEIJSERS, N., FERRIGNO, G., & SACCO, M. (2020). A protocol for the comparison of reaching gesture kinematics in physical versus immersive virtual reality. 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 1–6.

BARRIOS, M., RODRIGUEZ, L., PACHÓN, C., MEDINA, B., & SIERRA, J. E. (2019). Functional telerehabilitation based on interactive virtual environments as a rehabilitation proposal for patients with disabilities. Espacios, 40(25), 1–14.

BENRACHOU, D. E., MASMOUDI, M., DJEKOUNE, O., ZENATI, N., & OUSMER, M. (2020). Avatar-Facilitated Therapy and Virtual Reality: Next-Generation of Functional Rehabilitation Methods. 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), 298–304.

CASANOVA, M., MUÑOZ, J., HENAO, O., & DAVID, L. (2015). Exergames como herramienta para la evaluación del equilibrio postural en un paciente con esclerosis múltiple. IEEE.

COUTO SOARES, J., VIEIRA, A., & GABRIEL, J. (2013). Assisted living: Home physiotherapy demo. 2013 2nd Experiment@ International Conference (’13), 162–163.

DE ARAUJO, F. M. A., VIANA FILHO, P. R. F., ADAD FILHO, J. A., FONSECA FERREIRA, N. M., VALENTE, A., & SOARES, S. F. S. P. (2019, August 1). A new approach of developing games for motor rehabilitation using Microsoft Kinect. 2019 IEEE 7th International Conference on Serious Games and Applications for Health, SeGAH 2019.

DOCKX, K., BEKKERS, E. M. J., VAN DEN BERGH, V., GINIS, P., ROCHESTER, L., HAUSDORFF, J. M., MIRELMAN, A., & NIEUWBOER, A. (2016). Virtual reality for rehabilitation in Parkinson’s disease. In Cochrane Database of Systematic Reviews (Vol. 2016, Issue 12). John Wiley and Sons Ltd.

DULAU, E., BOTHA-RAVYSE, C. R., & LUIMULA, M. (2019). Virtual reality for physical rehabilitation: A Pilot study How will virtual reality change physical therapy? 10th IEEE International Conference on Cognitive Infocommunications, CogInfoCom 2019 - Proceedings, 277–282.

ENG, K., SIEKIERKA, E., CAMEIRAO, M., ZIMMERLI, L., PYK, P., DUFF, A., EROL, F., SCHUSTER, C., BASSETTI, C., KIPER, D., & VERSCHURE, P. (2007). Cognitive virtual-reality based stroke rehabilitation. IFMBE Proceedings, 14(1), 2839–2843.

FARRENY, M. A., BUEN, M. C., AGUIRREZABAL, A., FERRIOL, P., TOUS, F., & ALCALDE, M. A. (2012). Play for health (P4H): una nueva herramienta en telerehabilitación. Rehabilitación, 46(2), 135–140.

FENG, H., LI, C., LIU, J., WANG, L., MA, J., LI, G., GAN, L., SHANG, X., & WU, Z. (2019). Virtual reality rehabilitation versus conventional physical therapy for improving balance and gait in parkinson’s disease patients: A randomized controlled trial. Medical Science Monitor, 25, 4186–4192.

FERENCIK, N., BUNDZEL, M., HRUSKA, L., & CIK, I. (2020). Patient assessment using computer games in rehabilitation. SAMI 2020 - IEEE 18th World Symposium on Applied Machine Intelligence and Informatics, Proceedings, 51–55.

FONSECA, A., ALULEMA, D., PINEDA, F., & MOROCHO, D. (2020). Auxiliar Prototype for Physiotherapy Using Kinect. 2020 Seventh International Conference on EDemocracy & EGovernment (ICEDEG), 269–274.

GLEGG, S. (2017). Virtual Rehabilitation with Children: Challenges for Clinical Adoption [From the Field]. IEEE Pulse, 8(6), 3–5.

HUKIC, A., DOLINSEK, I., ZAJC, D., VESEL, M., KRIZMANIC, T., POTISK, K. P., BLAZICA, B., BIASIZZO, A., & NOVAK, F. (2017). Telerehabilitation of upper extremities with target based games for persons with Parkinson’s disease. International Conference on Virtual Rehabilitation, ICVR, 2017-June.

LEVAC, D. E., TAYLOR, M. M., PAYNE, B., & WARD, N. (2019). Influence of virtual environment complexity on motor learning in typically developing children and children with cerebral palsy. International Conference on Virtual Rehabilitation, ICVR, 2019-July.

PACHOULAKIS, I., XILOURGOS, N., PAPADOPOULOS, N., & ANALYTI, A. (2017). Enrichment of a Kinect-based Physiotherapy and Assessment Platform for Parkinson’s disease Patients. Advances in Image and Video Processing, 5(1), 31.

QUADRADO, V. H., SILVA, T. D. DA, FAVERO, F. M., TONKS, J., MASSETTI, T., & MONTEIRO, C. B. DE M. (2019). Motor learning from virtual reality to natural environments in individuals with Duchenne muscular dystrophy. Disability and Rehabilitation: Assistive Technology, 14(1), 12–20.

RAMÍREZ, E., MORENO, F., OJEDA, J., MENA, C., RODRÍGUEZ, O., RANGEL, J., & ÁLVAREZ, S. (2014). Un Framework para la Rehabilitación Física en Miembros Superiores con Realidad Virtual. Revista Venezolana de Computación, 1(1), 8–16.

SCHEIDEMAN-MILLER, C., CLARK, P. G., MOORAD, A., POST, M. L., HODGE, B. G., & SMELTZER, S. (2003). Efficacy and sustainability of a telerehabilitation program. Proceedings of the 36th Annual Hawaii International Conference on System Sciences, HICSS 2003.

SCRATCH, F. (2018). Scratch - Imagine, Program, Share. MIT Media Lab.

SHAHAB, M., RAISI, M., HEJRATI, M., TAHERI, A. R., & MEGHDARI, A. (2019). Virtual Reality Robot for Rehabilitation of Children with Cerebral Palsy (CP). ICRoM 2019 - 7th International Conference on Robotics and Mechatronics, 63–68.

VIÑAS-DIZ, S., & SOBRIDO-PRIETO, M. (2016). Virtual reality for therapeutic purposes in stroke: A systematic review. Neurología (English Edition), 31(4), 255–277.

YAGÜE, S., LEKUONA, A., & SANZ, R. (2016). Los videojuegos en el tratamiento fisioterápico de la parálisis CEREBRAL. FISIOTERAPIA, 38(6), 295–302. HTTPS://DOI.ORG/10.1016/J.FT.2015.11.005

YEH, S. C., LEE, S. H., CHAN, R. C., & CHEN, S. (2019). A kinect-based system for stroke rehabilitation. Proceedings - 2019 12th International Conference on Ubi-Media Computing, Ubi-Media 2019, 192–198.

Cómo citar
RODRÍGUEZ TOVAR, L., SIERRA, J. E., PACHÓN FLÓREZ, C., & BARRIOS BARRETO, M. (2020). Functional Telerehabilitation System in Interactive Virtual Environments and Biomedical Technologies. / Sistema de telerehabilitación funcional en entornos virtuales interactivos y tecnologías biomédicas. Utopía Y Praxis Latinoamericana, 25, 195-203. Recuperado a partir de