Phenology and environment in the presence of secondary metabolites in Psidium guajava L.

Keywords: phenology, environment, secondary metabolites

Abstract

Guava (Psidium guajava L.) is one of the most important fruit trees in Venezuela due to the acceptance of its fresh and processed fruit with relevant sensory and nutritional characteristics. The establishment of the crop in the producing areas has been the result of the initiative of leading farmers in the country. Due to the potential of guava, the present review aimed to describe the phenology, environment, and presence of secondary metabolites in P. guajava. The search for information on P. guajava included several key words such as phenology, flowering, fruiting, and secondary metabolism. Sixty-six references were selected from 130 results, including research articles, reviews, and books published between 1991 and 2023. Secondary metabolite biosynthesis is a dynamic process that depends on numerous factors associated with the plant and the environment. The content of phenols and flavonoids in guava can help characterize its production, agroindustrial, and pharmaceutical importance, be a tool for cultivar selection, and anticipate the content of other secondary metabolites to identify plants that differ in their production.

Downloads

Download data is not yet available.

References

Appiah, K. S., Omari, R. A., Onwona-Agyeman, S., Amoatey, C. A., Ofosu-Anim, J., Smaoui, A., Arfa, A. B., Suzuki, Y., Oikawa, Y., Okazaki, S., Katsura, K., Isoda, H., Kawada, K., & Fujii, Y. (2022). Seasonal changes in the plant growth-inhibitory effects of rosemary leaves on lettuce seedlings. Plants, 11(5), 673. Doi: 10.3390/plants11050673
Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences, 14(3), 4885-4911. Doi: 10.3390/ijms14034885
Azad, M. O. K., Kjaer, K. H., Adnan, M., Naznin, M. T., Lim, J. D., Sung, I. J., Park, C. H., & Lim, Y. S. (2020). The evaluation of growth performance, photosynthetic capacity, and primary and secondary metabolite content of leaf lettuce grown under limited irradiation of blue and red led light in an urban plant factory. Agriculture, 10(2), 28. Doi: 10.3390/agriculture10020028
Baskar, V., Venkatesh, R., & Ramalingam, S. (2018). Flavonoids (Antioxidants Systems) in higher plants and their response to stresses. In: D. Gupta, J. Palma, F. Corpas (Eds.), Antioxidants and Antioxidant Enzymes in Higher Plants (pp. 253-268). Springer, Cham. Doi: 10.1007/978-3-319-75088-0_12
Biondi, D., Leal, L., & Batista, A. C. (2007). Fenologia do florescimento e frutificação de espécies nativas dos Campos. Acta Scientiarum. Biological Sciences, 29(3), 269-276. https://www.redalyc.org/articulo.oa?id=187115762005
Böttger, A., Vothknecht, U., Bolle, C., & Wolf, A. (2018). Plant secondary metabolites and their general function in plants. In: Lessons on Caffeine, Cannabis & Co: Plant-derived drugs and their interaction with human receptors. Learning Materials in Biosciences (pp. 3-17). Springer, Cham. Doi: 10.1007/978-3-319-99546-5_1
Camarena-Tello, J., Martínez-Flores, H., Garnica-Romo, M., Padilla-Ramírez, J., Saavedra-Molina, A., Alvarez-Cortes, O., Bartolomé-Camacho, M., & Rodiles-López, J. (2018). Quantification of phenolic compounds and in vitro radical scavenging abilities with leaf extracts from two varieties of Psidium guajava L. Antioxidants, 7(3), 34. Doi: 10.3390/antiox7030034
Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1-20. Doi: 10.1016/j.plaphy.2013.05.009
Chiveu, J., Naumann, M., Kehlenbeck, K., & Pawelzik, E. (2019). Variation in fruit chemical and mineral composition of Kenyan guava (Psidium guajava L.): Inferences from climatic conditions, and fruit morphological traits. Journal of Applied Botany and Food Quality, 92, 151-159. Doi: 10.5073/JABFQ.2019.092.021
Coutinho, A. (2013). Extração de tanino em folhas, sementes e frutos verdes de cinamomo (Melia azedarach L.) com diferentes tipos de solventes (Bachelor's thesis, Universidade Tecnológica Federal do Paraná). http://repositorio.utfpr.edu.br/jspui/handle/1/6501
da Fontoura Custódio Monteiro, V., Dias Gonçalves, E., Abreu Moura, P. H., Vieira da Silva, L., Bolzan Martins, F., & Norberto, P. M. (2021). Estágios fenológicos da goiabeira ‘Paluma’ em região de clima subtropical de acordo com a escala BBCH. Revista Brasileira De Ciências Agrárias, 16(3), 1-8. Doi: 10.5039/agraria.v16i3a177
Esparza, D., Tong, F., Parra, G., Sosa, L., & Petit, D. (1993). Caracterización de la producción de guayaba, Psidium guajava L., en una granja del Municipio Mara del Estado Zulia. Revista de la Facultad de Agronomía de la Universidad del Zulia, 10(Suplemento 1), 53-54.
Espinosa-Leal, C. A., Mora-Vásquez, S., Puente-Garza, C. A., Alvarez-Sosa, D. S., & García-Lara, S. (2022). Recent advances on the use of abiotic stress (water, UV radiation, atmospheric gases, and temperature stress) for the enhanced production of secondary metabolites on in vitro plant tissue culture. Plant Growth Regulation, 97(1), 1-20. Doi: 10.1007/s10725-022-00810-3
Ferreira, M. D. C., Martins, F. B., Florêncio, G. W., & Pasin, L. A. (2019). Cardinal temperatures and modeling of vegetative development in guava. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(11), 819-825. Doi: 10.1590/1807-1929/agriambi.v23n11p819-825
Fisher, G., & Orduz-Rodríguez, O. (2012). Ecofisiología en frutales. En: G. Fisher, L.M. Melgarejo, D. Miranda (Eds.). Manual para el cultivo de frutales en el trópico. (pp. 54-72). Produmedios.
Fotirić, M. F., Tosti, T., Sredojević, M., Milivojević, J., Meland, M., & Natić, M. (2019). Comparison of sugar profile between leaves and fruits of blueberry and strawberry cultivars grown in organic and integrated production system. Plants, 8(7), 205. Doi: 10.3390/plants8070205
Gómez, R. (1995). Manejo agronómico del cultivo del guayabo en Colombia (No. Doc. 24646) CO-BAC, Bogotá.
Huyskens-Keil, S., Eichholz-Düdar, L., Hassenberg, K., & Herppich, W.B. (2020). Impact of light quality (White, red, blue light and UV-C irradiation) on changes in antocyanin content and dynamics of PAL and POD activities in apical and basal spear sections of White asparagus after harvest. Postharvest Biology and Thechnology, 161, 111069. Doi: 10.1016/j.postharvbio.2019.111069
Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, 52(39), 1-25. Doi: 10.1186/s40659-019-0246-3
Jan, R., Asaf, S., Numan, M., Lubna, & Kim, K. M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 968. Doi: 10.3390/agronomy11050968
Jassal, K., & Kaushal, S. (2019). Phytochemical and antioxidant screening of guava (Psidium guajava) leaf essential oil. Agricultural Research Journal, 56(3), 528-533. Doi: 10.5958/2395-146X.2019.00082.6
Kaplan, I., Halitschke, R., Kessler, A., Sardanelli, S., & Denno, R. F. (2008). Constitutive and induced defenses to herbivory in above‐and belowground plant tissues. Ecology, 89(2), 392-406. Doi: 10.1890/07-0471.1
Lattanzio, V. (2013). Phenolic Compounds: Introduction. In: K. Ramawat, J. Mérillon (Eds.), Natural Products (pp. 1543-1580). Springer. Doi: 10.1007/978-3-642-22144-6_57
Li, X., Li, B., Min, D., Ji, N., Zhang, X., Li, F., & Zheng, Y. (2021). Transcriptomic analysis reveals key genes associated with the biosynthesis regulation of phenolics in fresh-cut pitaya fruit (Hylocereus undatus). Postharvest Biology and Technology, 181, 111684. Doi: 10.1016/j.postharvbio.2021.111684
Li, Y., Xu, J., Li, D., Ma, H., Mu, Y., Zheng, D., Huang, X., & Li, L. (2021). Chemical characterization and hepatoprotective effects of a standardized triterpenoid-enriched guava leaf extract. Journal of Agricultural and Food Chemistry, 69(12), 3626-3637. Doi: 10.1021/acs.jafc.0c07125
Liu, X., Yan, X., Bi, J., Liu, J., Zhou, M., Wu, X., & Chen, Q. (2018). Determination of phenolic compounds and antioxidant activities from peel, flesh, seed of guava (Psidium guajava L.). Electrophoresis, 39(13), 1654-1662. Doi: 10.1002/elps.201700479
Lustre, H. (2022). Los superpoderes de las plantas: los metabolitos secundarios en su adaptación y defensa. Revista Digital Universitaria, 23(2). Doi: 10.22201/cuaieed.16076079e.2022.23.2.10
Mamani de Marchese, A., & Filippone, M. P. (2018). Bioinsumos: componentes claves de una agricultura sostenible. Revista agronómica del noroeste argentino, 38(1), 9-21. https://ranar.faz.unt.edu.ar/index.php/ranar/article/view/36/29
Marín, M., Casassa, A., Pérez, E., González, C., Chirinos, D., González, C., & Sandoval, L. (2004). Enmiendas orgánicas para la recuperación de árboles de guayabo (Psidium guajava L.) infestados con Meloidogyne incognita. I. Variación de características fenológicas. Revista de la Facultad de Agronomía de la Universidad del Zulia, 21(Supl. 1), 129-136. https://www.produccioncientificaluz.org/index.php/agronomia/article/view/26529
Marín, M., Casassa, A., Rincón, A., Labarca, J., Hernández, Y., Gómez, E., Viloria, Z., Bracho, B., & Martínez, J. (2000). Comportamiento de tipos de guayabo (Psidium guajava L.) injertados sobre Psidium friedrichsthalianum Berg-Niedenzu. Revista de la Facultad de Agronomía de la Universidad del Zulia, 17(5), 384-392. https://www.produccioncientificaluz.org/index.php/agronomia/article/view/26369
Mendes, L. A., Martins, G. F., Valbon, W. R., de Souza, T. D. S., Menini, L., Ferreira, A., & da Silva Ferreira, M. F. (2017). Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. Industrial Crops and Products, 108, 684-689. Doi: 10.1016/j.indcrop.2017.07.034
Mendoza, I., Peres, C., & Morellato, L. (2017). Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative neotropical review. Global and Planetary Change, 148, 227-241. Doi: 10.1016/j.gloplacha.2016.12.001
Morais-Braga, M., Carneiro, J., Machado, A., Sales, D., dos Santos, A., Boligon, A., Athayde, M., Menezes, I., Souza, D., Costa, J., & Coutinho, H. (2017). Phenolic composition and medicinal usage of Psidium guajava Linn.: Antifungal activity or inhibition of virulence?. Saudi Journal of Biological Sciences, 24(2), 302-313. Doi: 10.1016/j.sjbs.2015.09.028
Narayani, M., & Srivastava, S. (2017). Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochemistry Reviews, 16(6), 1227–1252. Doi: 10.1007/s11101-017-9534-0
Naseer, S., Hussain, S., Naeem, N., Pervaiz M., & Rahman, M. (2018). The phytochemistry and medicinal value of Psidium guajava (guava). Clinical Phytoscience, 4, 32. Doi: 10.1186/s40816-018-0093-8
Pant, P., Pandey, S., & Dall'Acqua, S. (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry & Biodiversity, 18(11), e2100345. Doi: 10.1002/cbdv.202100345
Pawar, R., & Rana, V. (2019). Manipulation of source-sink relationship in pertinence to better fruit quality and yield in fruit crops: a review. Agricultural Reviews, 40(3), 200-207. Doi: 10.3389/fenvs.2021.700768
Peñarrieta, J., Tejeda, L., Mollinedo, P., Vila, J., & Bravo, J. (2014). Phenolic compounds in food. Revista Boliviana de Química, 31(2), 68-81. http://www.scribd.com/bolivianjournalofchemistry
Pérez-Pérez, E., Castillo-Pirela, V., Ortega-Fernández, J., Sandoval-Sánchez, L., Medina-Lozano, D., Ramírez-Villalobos, M., & Ettiene-Rojas, G. (2020). Catequina y epicatequina en hojas de guayabo Criolla Roja. Revista de la Facultad de Agronomía de la Universidad del Zulia, 37(3), 262-279. https://www.produccioncientificaluz.org/index.php/agronomia/article/view/32662
Pérez-Pérez, E., Ettiene, G., Marín, M., Casassa-Padrón, A., Silva, N., Raga, J., González, C., Sandoval, L., & Medina, D. (2014). Determinación de fenoles y flavonoides totales en hojas de guayabo (Psidium guajava L.). Revista de la Facultad de Agronomía de la Universidad del Zulia, 31(1), 60-77. https://www.produccioncientificaluz.org/index.php/agronomia/article/view/27149
Pérez-Pérez, E. D. C., Ettiene-Rojas, G. R., Ramírez-Villalobos, M. D. C., & Gómez-Degraves, Á. (2023). Sustancias antioxidantes en diferentes fases fenológicas de Psidium guajava L. Agronomía Mesoamericana, 34(2), 52601-52601. Doi: 10.15517/am.v34i2.52601
Pérez-Pérez, E., Saavedra-Guillén, M., Ortega-Fernández, J., Sandoval-Sánchez, L., Medina-Lozano, D., Ramírez-Villalobos, M., & Ettiene-Rojas, G. (2019). Flavonoides en frutos de guayabo Criolla Roja (Psidium guajava L.). Boletín del Centro de Investigaciones Biológicas, 53(3), 236-249.
Piasecka, A., Sawikowska, A., Kuczyńska, A., Ogrodowicz, P., Mikołajczak, K., Krystkowiak, K., Gudyś, K., Guzy-Wróbelska, J., Krajewski, P., & Kachlicki, P. (2017). Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. The Plant Journal, 89(5), 898-913. Doi: 10.1111/tpj.13430
Piñol, M., Palazón, J., & Cusidó, R. (2013). Introducción al metabolismo secundario. En: J. Azcón-Bieto, M. Talón (Eds.), Fundamentos de fisiología vegetal (pp. 323-348). (2 Ed.). McGraw Hill Interamericana.
Quirós, M., Petit, Y., Sánchez, A., Aponte, O., Poleo, N., Ortega, J., & Dorado, I. (2009). Poblaciones de Oligonychus psidium Estebanes y Baker (Acari: Tetranychidae) correlacionadas con aspectos fenológicos del guayabo (Psidium guajava L.). Revista UDO Agrícola, 9(1), 208-216. https://dialnet.unirioja.es/servlet/articulo?codigo=3293988
Rejeb, I.B., Pastor, V., & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3(4), 458-475. Doi: 10.3390/plants3040458
Rioja Soto, T. C. (2020). Los metabolitos secundarios de las plantas y potencial uso en el manejo de plagas agrícolas en agroecosistemas desérticos. Idesia (Arica), 38(1), 3-5. https://revistas.uta.cl/pdf/349/1.pdf
Rivero-Maldonado, G., Pacheco, D., Martín, L., Sánchez-Urdaneta, A., Quirós, M., Ortega, J., Colmenares, C., & Bracho, B. (2013). Flavonoides presentes en especies de Psidium (Myrtaceae) de Venezuela. Revista de la Facultad de Agronomía de la Universidad del Zulia, 30(2), 217-241. https://www.produccioncientificaluz.org/index.php/agronomia/article/view/27124
Salazar, D. M., Melgarejo, P., Martínez, R., Martínez, J. J., Hernández, F., & Burguera, M. (2006). Phenological stages of the guava tree (Psidium guajava L.). Scientia Horticulturae, 108(2), 157-161. Doi: 10.1016/j.scienta.2006.01.022
Saltveit, M. E. (2017). Synthesis and metabolism of phenolic compounds. En: E. M. Yahia (Ed.), Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd Edition, (pp. 115-124). John Wiley & Sons, Ltd. Doi: 10.1002/9781119158042.ch5
Sampaio, B. L., Edrada-Ebel, R. A., & Batista Da Costa, F. (2016). Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Scientific Reports, 6, 29265. Doi: 10.1038/srep29265
Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food chemistry, 383, 132531. Doi: 10.1016/j.foodchem.2022.132531
Shivpoojan, A., Ram, R., Rajan, R., & Pandey, R. (2018). Efficacy of foliar application of micronutrients on fruit set in winter season guava (Psidium guajava L.) cv. Lalit. International Journal of Chemical Studies, 6(5), 2908-2910. https://dialnet.unirioja.es/servlet/articulo?codigo=8882545
Singh, S. (2011). Guajava (Psidium guajava L.). In: E. Yahia (Ed.), Postharvest biology and technology of tropical and subtropical fruits, (pp. 213- 245). Woodhead Publishing. Doi: 10.1533/9780857092885.213
Speed, M. P., Fenton, A., Jones, M. G., Ruxton, G. D., & Brockhurst, M. A. (2015). Coevolution can explain defensive secondary metabolite diversity in plants. New Phytologist, 208(4), 1251-1263. Doi: 10.1111/nph.13560
Tolić, M., Krbavčić, I., Vujević, P., Milinović, B., Jurčević, I., & Vahčić, N. (2017). Effects of weather conditions on phenolic content and antioxidant capacity in juice of chokeberries (Aronia melanocarpa L.). Polish Journal of Food and Nutrition Sciences, 67(1), 67-74.
Tong, F., Medina, D., & Esparza, D. (1991). Variabilidad en poblaciones de guayabo Psidium guajava L. del municipio Mara del estado Zulia. Revista de la Facultad de Agronomía de la Universidad del Zulia, 8(1), 15-27. https://www.produccioncientificaluz.org/index.php/agronomia/article/view/25910
Turner, M. F., Heuberger, A. L., Kirkwood, J. S., Collins, C. C., Wolfrum, E. J., Broeckling, C. D., Prenni J. E., & Jahn, C. E. (2016). Non-targeted metabolomics in diverse sorghum breeding lines indicates primary and secondary metabolite profiles are associated with plant biomass accumulation and photosynthesis. Frontiers in Plant Science, 7, 953. Doi: 10.3389/fpls.2016.00953
Verma, N., & Shukla, S. (2015). Impact of various factors responsible for fluctuation in plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic Plants, 2(4), 105-113. Doi: 10.1016/j.jarmap.2015.09.002
Vicente, O., & Boscaiu, M. (2018). Flavonoids: Antioxidant compounds for plant defence…... and for a healthy human diet. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 14-21. Doi: 10.15835/nbha46110992
Vijaya Anand, A., Velayuthaprabhu, S., Rengarajan, R.L., Sampathkumar, P., & Radhakrishnan, R. (2020). Bioactive Compounds of Guava (Psidium guajava L.) In: H.N., Murthy, V.A. Bapat (Eds.), Bioactive Compounds in Underutilized Fruits and Nuts (pp. 503–527). Springer International Publishing. Doi: 10.1007/978-3-030-30182-8_37
Vranová, E., Coman, D., & Gruissem, W. (2012). Structure and dynamics of the isoprenoid pathway network. Molecular plant, 5(2), 318-333. Doi: 10.1093/mp/sss015
Wang, L., Wu, Y., Bei, Q., Shi, K., & Wu, Z. (2017). Fingerprint profiles of flavonoid compounds from different Psidium guajava leaves and their antioxidant activities. Journal of Separation Science, 00, 1-13. Doi: 10.1002/jssc.201700477
Xu, H., Wang, G., Zhang, J., Zhang, M., Fu, M., Xiang, K., Zhang, M., & Chen, X. (2022). Identification of phenolic compounds and active antifungal ingredients of walnut in response to anthracnose (Colletotrichum gloeosporioides). Postharvest Biology and Technology, 192, 112019. Doi: 10.1016/j.postharvbio.2022.112019
Yang, L., Wen, K. S., Ruan, X., Zhao, Y.Z., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23, 762. Doi: 103390/molecules23040762
Zhang, Y., Butelli, E., & Martin, C. (2014). Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 19, 81-90. Doi: 10.1016/j.pbi.2014.05.011
Published
2023-12-06
How to Cite
Pérez, E., Ettiene, G., Ramírez, M., & Gómez, Ángel. (2023). Phenology and environment in the presence of secondary metabolites in Psidium guajava L. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 40(Supplement), e2340Spl04. Retrieved from https://www.produccioncientificaluz.org/index.php/agronomia/article/view/41233
Section
Crop Production