Fatty acid content of Creole-Nubia goat milk with different seasonal diets in an intensive feeding system in an arid region

  • Ricardo Ortega-Pérez Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Autónoma de Baja California Sur, México. https://orcid.org/0000-0002-3718-9439
  • Eduardo Toyes-Vargas Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada. https://orcid.org/0000-0002-0579-7552
  • José Espinoza-Villavicencio Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Autónoma de Baja California Sur, México. https://orcid.org/0000-0001-8609-8325
  • Alejandro Palacios-Espinosa Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Autónoma de Baja California Sur, México. https://orcid.org/0000-0002-4726-4164
  • Juan Montes-Sánchez CONACYT-Centro de Investigaciones Biológicas del Noroeste, S.C. Independencia y Paseo Eucalipto, Guerrero Negro, Mulegé, Baja California Sur, México. C.P. 23940. https://orcid.org/0000-0002-0400-6587
  • Bernardo Murillo-Amador Centro de Investigaciones Biológicas del Noroeste, S.C. Avenida Instituto Politécnico Nacional No. 195. Colonia Playa Palo de Santa Rita Sur. La Paz, Baja California Sur, México. C.P. 23096. https://orcid.org/0000-0002-9489-4054
Keywords: dry and rainy seasons, dairy goats, fatty acid content, confinement

Abstract

The objective is to determine the seasonal-diet effect (dry, rainy) on goats’ milk fatty acid profile reared on a farm with an intensive production system located in an arid zone of Mexico. In the rainy season, a group of 10 goats, Creole × Anglo-Nubian, consumed a diet composed exclusively of alfalfa hay (Medicago sativa). Meanwhile, in the dry season, a similar goat group ate a mixture of corn (Zea mays) and sorghum grains (Sorghum bicolor), and buffel grass hay (Cenchrus ciliaris) in a 1:1:1 ratio. The goats were between 90 and 180 days of lactation. The saturated, monounsaturated, polyunsaturated, and branched-chain fatty acids in milk were measured. The rainy-season milk showed a higher content of fatty acids; however, the contents of most types of fatty acids were not significant between seasons, except for the polyunsaturated (18:2 n-6, a-linoleic acid) and highly unsaturated fatty acids (arachidonic, eicosapentaenoic, and docosahexaenoic acid).

Downloads

Download data is not yet available.

References

AOAC - Association of Official Analytical Chemistry (2005). Official Methods of Analysis. 18th ed. AOAC International, Washington, DC. https://www.aoac.org/
Ayeb, N., Addis, M., Fiori, M., Khorchani, S., Atigui, M., & Khorchani, T. (2015). Quality and fatty acid profile of the milk of indigenous goats subjected to different local diets in Tunisian arid lands. Journal of Animal Physiology and Animal Nutrition, 100(1), 101-108. https://doi.org/10.1111/jpn.12344
Belury, M.A. (2002). Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annual Review of Nutrition, 22(1), 505-531. https://doi.org/10.1146/annurev.nutr.22.021302.121842
Bernacka, H. (2005). Effect of breed and feeding season on the nutritive quality of goat milk. Folia Biologica (Kraków), 53(1), 99-102. https://doi.org/10.3409/173491605775789209
Bligh, E.G., and Dyer, W.J.A. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
Cabrita, A.R.J., Bessa, R.J.B., Alves, S.P., Dewhurst, R.J., & Fonseca, A.J.M. (2007). Effects of dietary protein and starch on intake, milk production, and milk fatty acid profiles of dairy cows fed corn silage-based diets. Journal of Dairy Science, 90(3), 1429-1439. https://doi.org/10.3168/jds.S0022-0302(07)71628-4
Chen, H., Bao, C.H., Shu, G., & Wang, C.H. (2016). Response surface methodology for optimizing fermentation conditions of goat yogurt with Bifidobacterium bifidum and Lactobacillus casei. Emirates Journal of Food and Agriculture, 28(8), 547-553. https://www.ejfa.me/index.php/journal/article/view/1146
Chilliard, Y., Ferlay, A., Mansbridge, R.M., & Doreau, M. (2000). Ruminant milk fat plasticity: nutritional control of saturated, polyunsaturated, trans, and conjugated fatty acids. Annales de Zootechnie, 49 (3), 181-205. https://doi.org/10.1051/animres:2000117
Chilliard, Y., & Lamberet, G. (2001). Biochemical characteristics of goat milk lipids and lipolytic system. A comparison with cows and human milk. Effect of lipid supplementation. In: Goat milk quality, raw material for cheesemaking. Freund, G. (ed). Institut Technique des Produits Laitiers Caprins (ITPLC), Ed. Surgères, France. pp. 71-114. https://hal.inrae.fr/hal-02842365
Chilliard Y., Rouel J., Ferlay A., Bernard L., Gaborit P., Raynal-Ljutovac K., & Lauret A. (2005). Effects of type of forage and lipid supplementation on goat milk fatty acids and sensorial properties of cheeses. In: Future of the sheep and goat dairy sector, special issue No 0501/part 5, International Dairy Federation. pp. 297-304. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17209772
Christie, W.W. (1995). Composition and structure of milk lipids. In: Advanced Dairy Chemistry 2: Lipids. Fox, P.F. (ed). Second edition. Chapman and Hall (Ed), London, England. p.1-42.
Czarniawska-Zajac, S., Brzostowski, H., & Zielazny, M. (2006). Effect of the feeding period on the chemical composition and fatty acid profile of milk from French Alpine dairy goats. Polish Journal of Food and Nutrition Sciences, 15/56 (1s), 51-55. http://journal.pan.olsztyn.pl/pdf-98672-30485?filename=EFFECT%20OF%20THE%20FEEDING.pdf
Delgadillo-Puga, C., Cuchillo-Hilario, M., & Pérez-Gil, F. (2009). Effect of feeding management and seasonal variation on fatty acid composition of Mexican soft raw goats’ milk cheese. Italian Journal of Animal Science, 8(2), 402-404. http://dx.doi.org/10.4081/ijas.2009.s2.402
Elgersma, A., Tamminga, S., & Ellen, G. (2006). Modifying milk composition through forage. Animal Feed Science and Technology, 131(3-4), 207-225. https://doi.org/10.1016/j.anifeedsci.2006.06.012
Evershed, R.P., Payne, S., Sherratt, A.G., Copley, M.S., Coolidge, J., Urem-Kotsu, D., Kotsakis, K., Özdoğan, M., Özdoğan, A.E., Nieuwenhuyse, O., Akkermans, P.M.M.G., Bailey, D., Andeescu, R.R., Campbell, S., Farid, S., Hodder, I., Yalman, N., Özbaşaran, M., Bıçakcı, E., Garfinkel, Y., Levy, T., & Burton, M.M. (2008). Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature, 455, 528-531. https://doi.org/10.1038/nature07180
Gharibi, H., Rashidi, A., Jahani-Azizabadi, H., & Mahmoudi, P. (2020). Evaluation of milk characteristics and fatty acid profiles in Markhoz and Kurdish hairy goats. Small Ruminant Research, 192, 106195. https://doi.org/10.1016/j.smallrumres.2020.106195
INEGI-Instituto Nacional de Estadística y Geografía. (2006). Sistemas Nacionales Estadísticos y de Información Geográfica. México. https://www.inegi.com.mx
Kelsey, J.A., Corl, B.A., Collier, R.J., & Bauman, D.E. (2003). The effect of breed, parity, and stage of lactation on conjugated linoleic acid (CLA) in milk fat from dairy cows. Journal of Dairy Science, 86(8), 2588-2597. https://doi.org/10.3168/jds.s0022-0302(03)73854-5
Koppova, I., Novotna, Z., Strosova, L., & Fliegerova, K. (2008). Analysis of fatty acid composition of anaerobic rumen fungi. Folia Microbiologica, 53(3), 217-220. https://doi.org/10.1007/s12223-008-0029-7
Lock, A.L., and Garnsworthy, P.C. (2003). Seasonal variation in milk conjugated linoleic acid and delta-9-desaturase activity in dairy cows. Livestock Production Science, 79(1), 47-59. https://doi.org/10.1016/S0301-6226(02)00118-5
Lopez, A., Vasconi, M., Moretti, V.M., & Bellagamba, F. (2019). Fatty acid profile in goat milk from high- and low-input conventional and organic systems. Animals, 9(7), 452. https://doi.org/10.3390/ani9070452
Manzano, M.G., Návar, J., Pando-Moreno, M., & Martínez, A. (2000). Overgrazing and desertification in northern México, highlights on Northeastern region. Annals of Arid Zone, 39(3), 285-304. https://epubs.icar.org.in/index.php/AAZ/article/view/65874
Marsh, J.B., and Weinstein, D.B. (1966). Simple charring method for determination of lipids. Journal of Lipid Research, 7(4), 574-576. https://www.jlr.org/action/doSearch?text1=Simple+charring+method+for+determination+of+lipids&field1=AllField
Mejía-Uribe, L.A., Domínguez-Vara, I.A, Hernández-Ruipérez, F., & Morales-Almaráz, E. 2022. Production and milk fatty acids profile of dairy goats fed with canola silage (Brassica napus) instead of corn silage (Zea mays) in total mixed rations. Tropical and Subtropical Agroecosystems, 25:1-9. http://doi.org/10.56369/tsaes.3717
Milewski, S., Ząbek, K., Antoszkiewicz, Z., Tański, Z., & Sobczak, A. (2018). Impact of production season on the chemical composition and health properties of goat milk and rennet cheese. Emirates Journal of Food and Agriculture, 30(2), 107-114. https://doi.org/10.9755/ejfa.2018.v30.i2.1602
Moate, P.J., Chalupa, W., Boston, R.C., & Lean, I.J. (2007). Milk fatty acids. I. Variation in the concentration of individual fatty acids in bovine milk. Journal of Dairy Science, 90(10), 4730-4739. https://doi.org/10.3168/jds.2007-0225
Nudda, A., McGuire, M.A., Battacone, G., & Pulina, G. (2005). Seasonal variation in conjugated linoleic acid and vaccenic acid in milk fat of sheep and its transfer to cheeses and ricotta. Journal of Dairy Science, 88(4), 1311-1319. https://doi.org/10.3168/jds.S0022-0302(05)72797-1
Renna, M., Lussiana, C., Cornale, P., Fortina, R., & Mimosi, A. (2012). Changes in goat milk fatty acids during abrupt transition from indoor to pasture diet. Small Ruminant Research, 108(1-3), 12-21. https://www.sciencedirect.com/science/article/abs/pii/S0921448812002490
Shingfield, K., Ahvenjärvi, S., Toivonen, V., Ärölä, A., Nurmela, K.V.V., Huhtanen, P., & Griinari, J. (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Animal Science, 77(1), 165-179. DOI: https://doi.org/10.1017/S1357729800053765
Talpur, F.N., Bhanger, M.I., Khooharo, A. A., & Memon, G.Z. (2008). Seasonal variation in fatty acid composition of milk from ruminants reared under the traditional feeding system of Sindh Pakistan. Livestock Science, 118(1-2), 166-172. https://doi.org/10.1016/j.livsci.2008.04.008
TIBCO Software Inc. (2018). Statistica (data analysis software system), version 13. http://tibco.com.
Vlaeminck, B., Fievez, V., Tamminga, S., Dewhurst, R.J., Van Vuuren, A., De Brabander, D., & Demeyer, D. (2006). Milk odd and branched-chain fatty acids in relation to the rumen fermentation pattern. Journal of Dairy Science, 89(10), 3954-3964. https://doi.org/10.3168/jds.S0022-0302(06)72437-7
Wolff, R.L., Bayard, C.C. & Fabien, R.J. (1995). Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis on trans 18:1 acid: Application to the study of seasonal variation in French butters. Journal of the American Oil Chemists’ Society, 72(12), 1471-1483. https://doi.org/10.1007/BF02577840
Yurchenko, S., Sats, A., Tatar, V., Kaart, T., Mootse, H., & Jõudu, I. (2018). Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chemistry, 254, 326-332. https://doi.org/10.1016/j.foodchem.2018.02.041
Published
2023-02-17
How to Cite
Ortega-Pérez, R., Toyes-Vargas, E., Espinoza-Villavicencio, J., Palacios-Espinosa, A., Montes-Sánchez, J., & Murillo-Amador, B. (2023). Fatty acid content of Creole-Nubia goat milk with different seasonal diets in an intensive feeding system in an arid region. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 40(1), e234008. Retrieved from https://www.produccioncientificaluz.org/index.php/agronomia/article/view/39730
Section
Food Technology