Leaves drying kinetics of the species Zanthoxylum sprucei (Rutaceae) and Melampodium divaricatum (Asteraceae)

  • Enrique Ruiz Reyes Universidad Técnica de Manabí, Av. Urbina y Che Guevara, CP 130105, Portoviejo, Manabí, Ecuador. Instituto de Ciencias Básicas https://orcid.org/0000-0002-6980-1581
  • Ricardo Baquerizo-Crespo Universidad Técnica de Manabí, Av. Urbina y Che Guevara, CP 130105, Portoviejo, Manabí, Ecuador. Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas
  • Michael Macías Pro Universidad Técnica de Manabí, Av. Urbina y Che Guevara, CP 130105, Portoviejo, Manabí, Ecuador. Laboratorio de Análisis Químicos y Biotecnológicos. Instituto de Investigación https://orcid.org/0000-0001-8975-1879
  • María José Pin Molina Universidad Técnica de Manabí, Av. Urbina y Che Guevara, CP 130105, Portoviejo, Manabí, Ecuador. Facultad de Ciencias Matemáticas, Físicas y Químicas https://orcid.org/0000-0001-6397-8485
  • Yesther Pita Gavilanes Universidad Técnica de Manabí, Av. Urbina y Che Guevara, CP 130105, Portoviejo, Manabí, Ecuador. Facultad de Ciencias Matemáticas, Físicas y Químicas
Keywords: Moisture extraction, drying kinetics, mathematical models, Fick's law

Abstract

The study of the drying of the plants is important for the extraction methods of the active principles, since it provides benefits both for the efficiency and for the stability. The objective of this research is to study the drying kinetics of the leaves of Zanthoxylum sprucei (Rutaceae) and Melampodium divaricatum (Asteraceae) species from the Manabí province. Eight empirical models derived from Fick's law with adjustment and the STATISTICA software as modeler was used. The model was made by applying the ORIGIN Pro fit curve. The kinetic results were obtained experimentally in a laboratory scale tunnel dryer with a temperature of 40°C, at 1 atm of pressure and a speed air of 8.47 m.s-1. To determine the model that best fits the experimental data, it relies on the correlation coefficient (R2), mean square error (ERMS) and chi-square (X2). The mathematical model that best describes the drying process is the logarithmic for Zanthoxylum sprucei and the Wang and Singh model for Melampodium divaricatum.

Downloads

Download data is not yet available.

References

Abano, E. E., H. Ma, and W. Qu. 2011. Influence of air temperature on the drying kinetics and quality of tomato slices. J. Food Process Technol. 2(5), 1-9.
Adegbite, A. E., F. M. Ojo, O. G. Abraham, J. Francis and S. Balogun. 2019. First record of Melampodium divaricatum (Asteraceae) in West Tropical Africa. Nordic Journal of Botany. 37(4), 1-16.
Agra, M. D. F., P. F. D. Freitas and J. M. Barbosa-Filho. 2007. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev. Brasileira de Farmacognosia. 17(1), 114-140.
Akpinar, E. K. 2006. Mathematical modelling of thin layer drying process under open sun of some aromatic plants. J. of Food Engineering. 77(4), 864-870.
Ali, A., C. C. Oon, B. L. Chua, A. Figiel, C. H. Chong, A. Wojdylo and J. Łyczko. 2020. Volatile and polyphenol composition, anti-oxidant, anti-diabetic and anti-aging properties, and drying kinetics as affected by convective and hybrid vacuum microwave drying of Rosmarinus officinalis L. Industrial Crops and Products. 151, 1-13.
Arslan, D. and M. M. Özcan. 2008. Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of rosemary leaves. Energy Conversion and Management. 49(5), 1258-1264.
Bellagha, S., E. Amami, A. Farhat and N. Kechaou. 2002. Drying kinetics and characteristic drying curve of lightly salted sardine (Sardinella aurita). Drying Technology. 20(7), 1527-1538.
Binutu, O. A. and G. A. Cordell. 2000. Constituents of Zanthoxylum sprucei. Pharmaceutical Biology. 38(3), 210-213.
Can, A. 2000. Drying kinetics of pumpkinseeds. Int. J. of Energy Research. 24(11), 965-975.
Castro, M. L. P., A. C. Villalobos y G. C. Gamboa. 2009. Efecto de las condiciones de secado sobre la cinética de deshidratación de las hojas de morera (Morus alba). Agronomía Mesoamericana. 275-283.
Coloma-Paxi, A., R. Paquita-Ninaraqui, R. Velásquez-Huallpa y R. L. Abarca. 2017. Efecto del escaldado y la temperatura en la cinética de secado de las hojas de quinua (Chenopodium quinoa Willd.), variedad Salcedo INIA. Agro Sur. 45(3), 57-73.
Costa, A. and H. Pereira. 2013. Drying kinetics of cork planks in a cork pile in the field. Food and Bioproducts Processing. 91, 14-22.
Doymaz, I. 2012. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). Energy Conversion and Management. 56, 199-205.
Doymaz, I. 2014. Drying kinetics and rehydration characteristics of convective hot-air dried white button mushroom slices. J. of Chem. 1-8.
Erbay, Z. and F. Icier. 2010. A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition. 50(5), 441-464.
Ertekin, C. and O. Yaldiz. 2004. Drying of eggplant and selection of a suitable thin layer drying model. J. of Food Engineering. 63(3), 349-359.
Fernandez, L., M. Ascanio, I. Botero, L. Cadenas, A. Matos y C. Sumoza. 2012. Etnobotánica: Una aproximación al conocimiento tradicional de las plantas medicinales. Memorias del Instituto de Biología Experimental. 6, 209-212.
García, S. V., M. E. Schmalko y A. Tanzariello. 2007. Isotermas de adsorción y cinética de secado de ciertas hortalizas y aromáticas cultivadas en misiones. RIA. Rev. de Investigaciones Agropecuarias. 36(1), 115-129.
Graham, J., S. Pendland, J. Prause, L. Danzinger, J. S. Vigo, F. Cabieses and N. Farnsworth. 2003. Antimycobacterial evaluation of Peruvian plants. Phytomedicine. 10(6-7), 528-535.
Helen, C., V. Antonio, M. Y. Z. Bourgeois y D. Westhoff. 2003. Tecnología de alimentos. Editorial LIMUSA. Mexico. 768 p.
Holowaty, S. A., A. E. Thea, C. Alegre and M. E. Schmalko. 2018. Differences in physicochemical properties of yerba maté (Ilex paraguariensis) obtained using traditional and alternative manufacturing methods. J. of Food Process Engineering. 41(8), 17-23.
Ismail, O. and O. G. Kocabay. 2018. Drying kinetics of hot-air dried beef meat: application of mathematical models, energy consumption, and color characteristics. Heat Transfer Research. 49(14).
Kaya, A. and O. Aydın. 2009. An experimental study on drying kinetics of some herbal leaves. Energy Conversion and Management. 50(1), 118-124.
Kumar, C., A. Karim, S. C. Saha, M. U. H. Joardder, R. Brown and D. Biswas. 2012. Multiphysics Modelling of convective drying of food materials. Proceedings of the Global Engineering, Science and Technology Conference. 2012.
Lorenzi, H. 2008. Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas. 4ta Edición. Instituto Plantarum de Estudos da Flora. Print Book. Nova Odessa SP (Brazil). 608 p.
Montes, E. J. M., R. T. Gallo, R. D. A. Pizarro, O. A. P Sierra y J. L. M. Escobar. 2008. Modelado de la cinética de secado de ñame (Dioscorea rotundata) en capa delgada. Revista Mexicana de Ingeniería Química. 28, 9.
Moreira, R. R. D., A. G. Santos, F. A. Carvalho, C. H. Perego, E. J. Crevelin, A. E. M. Crotti and C. V. Nakamura. 2019. Antileishmanial activity of Melampodium divaricatum and Casearia sylvestris essential oils on Leishmania amazonensis. Revista do Instituto de Medicina Tropical de Sao Paulo. 61, 1-7.
Neto, J. R. F. y A. C. P. Chagas. 2001. A homocisteína como fator de risco coronariano. Atherosclerosis. 12(1), 20-25.
Ocampo, A. 2016. Modelo cinético del secado de la pulpa de mango. Revista EIA. 3(5), 119-128.
Origin Lab(Pro). 2021. Versión 8.0. OriginLab Corporation. Northampton, MA, EE. UU.
Özbek, B. and G. Dadali. 2007. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J. of Food Engineering. 83(4), 541-549.
Pelissari, G. P., R. C. L. R. Pietro y R. R. D. Moreira. 2010. Atividade antibacteriana do óleo essencial de Melampodium divaricatum (Rich.) DC., Asteraceae. Revista Brasileira de Farmacognosia. 20(1), 70-74.
Pin, K. Y., T. Chuah, A. A. Rashih, C. Law, M. Rasadah and T. Choong. 2009. Drying of betel leaves (Piper betle L.): Quality and drying kinetics. Drying Technology. 27(1), 149-155.
Rattanamechaiskul, C. and N. Junka. 2020. Modeling of fragment formation of parchment coffee beans for rapid heat and mass transfer during fluidization drying. J. of Food Processing and Preservation. 44(8), 1-9.
Roberts, J. S., D. R. Kidd and O. Padilla-Zakour. 2008. Drying kinetics of grape seeds. Journal of Food Engineering. 89(4), 460-465.
Rocha, R. P., E. da Melo, J. B. de C. Corbín, P. A. Berbert, S. M. L. Donzeles y J. A. Tabar. 2012. Cinética del secado de tomillo. Revista Brasileira de Engenharia Agrícola e Ambiental. 16(6), 675-683.
Rondón M., S. Moncayo, X. Cornejo, J. Santos, D. Villalta, R. Siguencia and J. Duche. 2018. Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas Province Ecuador. Journal of King Saud University – Science. 30(4), 500-505.
Rosa, D. P., D. Cantú-Lozano, G. Luna-Solano, T. C. Polachini and J. Telis-Romero. 2015. Mathematical modeling of orange seed drying kinetics. Ciência e Agrotecnologia. 39(3), 291-300.
Salcedo, J. 2016. Modelado de la cinetica de secado del afrecho de yuca (Manihot esculenta Crantz). Revista Mexicana de Ingeniería Químcia. 15(3), 883-891.
Salibová, D. 2021. Ayahuasca ethno-tourism and its impact on the Indigenous Shuar Community (Ecuador) and Western Participants. Cesky Lid. 107(4), 511-532.
Sandoval-Torres, S., J. Rodríguez-Ramírez, L. Méndez-Lagunas y J. Sánchez-Ramírez. 2006. Rapidez de secado reducida: Una aplicación al secado convectivo de platano Roatán. dokumen.tips. 5(1), 35-38.
SAS Institute, Inc. 2004. SAS user's guide: Statistics. 9th edition. SAS Inst., Inc., Cary, NC.
Sponchiado, G., M. L. Adam, C. D. Silva, B. S. Soley, C. de Mello-Sampayo, D. A. Cabrini and M. F. Otuki. 2016. Quantitative genotoxicity assays for analysis of medicinal plants: A systematic review. J. of ethnopharmacology. 178, 289-296.
Tiwary, M., S. Naik, D. K. Tewary, P. Mittal and S. Yadav. 2007. Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. Journal of vector borne diseases. 44(3), 198.
Virgen-Navarro, L., E. J. Herrera-Lopez y H. Espinosa-Andrews. 2016. Estimación del coeficiente de difusividad durante el tostado de café en un lecho fuente utilizando un modelo difuso. 15(2), 13.
Zhang, Q.-A., Y. Song, X. Wang, W. Q. Zhao and X. H. Fan. 2016. Mathematical modeling of debittered apricot (Prunus armeniaca L.) kernels during thin-layer drying. J. of Food. 14(4), 509-517.
Published
2021-10-01
How to Cite
Ruiz Reyes, E., Baquerizo-Crespo, R., Macías Pro, M., Pin Molina, M. J., & Pita Gavilanes, Y. (2021). Leaves drying kinetics of the species Zanthoxylum sprucei (Rutaceae) and Melampodium divaricatum (Asteraceae). Revista De La Facultad De Agronomía De La Universidad Del Zulia, 38(4), 1069-1086. Retrieved from https://www.produccioncientificaluz.org/index.php/agronomia/article/view/36912
Section
Food Technology