Foliar fertilization of sodium selenite and its effects on yield and nutraceutical quality in grapevine

  • María de los Ángeles Sariñana-Navarrete Tecnológico Nacional de México/ Instituto Tecnológico de Torreón. Carretera Torreón-San Pedro km 7.5, Ejido Ana. Torreón, Coahuila, 27170, México https://orcid.org/0000-0002-0936-1692
  • Luis Guillermo Hernández-Montiel Centro de Investigaciones Biológicas del Noroeste. Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, México https://orcid.org/0000-0002-8236-1074
  • Esteban Sánchez-Chávez Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Delicias, Avenida Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias, Chihuahua, México Chihuahua, México https://orcid.org/0000-0002-8490-5194
  • Juan José Reyes Pérez Universidad Técnica Estatal de Quevedo. Av. Quito. Km 1 ½ vía a Santo Domingo. Quevedo, Los Ríos, Ecuador https://orcid.org/0000-0001-5372-2523
  • Bernardo Murillo-Amador Centro de Investigaciones Biológicas del Noroeste. Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, México https://orcid.org/0000-0002-9489-4054
  • Pablo Preciado-Rangel Tecnológico Nacional de México/ Instituto Tecnológico de Torreón. Carretera Torreón-San Pedro km 7.5, Ejido Ana. Torreón, Coahuila, 27170, México https://orcid.org/0000-0002-3450-4739
Keywords: Vitis vinifera, plant nutrition, selenium, phytochemical compounds

Abstract

Selenium (Se) is an essential micronutrient for humans, but in plants, this essentiality has not been demonstrated. However, the supplementation of Se in crops has been shown to improve the yield and the quality of the edible part. The objective of this research was to evaluate the effect of Se foliar fertilization on yield, nutraceutical quality and Se accumulation in grape. Five doses of Se (Na2SeO3 at 0.25, 0.5, 0.75, 1.0 and 1.25 mg.L-1) and a control were evaluated. The results obtained showed that the application in low doses of Se increased the yield; high doses increase nutraceutical quality and induced the accumulation of Se in grapes. In conclusion, the grapevine is a crop with the potential to be biofortified and improve the quality of grape.

Downloads

Download data is not yet available.

References

Association of Official Analytical Chemists (AOAC). 1990. Official Methods of Analysis, 15th Edition. Association of Official Analytical Chemists, Washington, DC.
Aviña de la Rosa, D. M. d. R., J. Carranza-Tellez, B. A. Vázquez-Huirtrón and J. Carranza-Concha. 2016. Capacidad antioxidante y contenido fenólico de uva blanca (Vitis vinifera L.) sin semilla. Investigación y Desarrollo en Ciencia y Tecnología en Alimentos. 1(1): 801-805.
Blasco, B., J. Rios, L. Cervilla, E. Sánchez‐Rodrigez, J. Ruiz and L. Romero. 2008. Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann Appl Biol. 152(3): 289-299.
Bocchini, M., R. D’Amato, S. Ciancaleoni, M. Fontanella, C. A. Palmerini, G. M. Beone, A. Onofri, V. Negri, G. Marconi and E. Albertini. 2018. Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance. Front. Plant Sci. 9; 389.
Brand-Williams, W., M. Cuvelier and C. Berset. 1995. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 28(1): 25-30.
Broadley, M. R., P. J. White, R. J. Bryson, M. C. Meacham, H. C. Bowen, S. E. Johnson, M. J. Hawkesford, S. P. McGrath, F. J. Zhao and N. Breward. 2006. Biofortification of UK food crops with selenium. P Nutr. Soc. 65(2): 169-181.
Casals-Mercadal, G., M. Torra-Santamaria, R. Deulofeu-Piquet and A. Ballesta-Gimeno. 2005. Importancia del selenio en la práctica clínica. Química Clínica. 24(3): 141-148.
da Silva, D. F., P. E. Cipriano, R. R. de Souza, M. S. Júnior, V. Faquin, M. L. de Souza Silva and L. R. G. Guilherme. 2020. Biofortification with selenium and implications in the absorption of macronutrients in Raphanus sativus L. J. Food Compos. Anal. 86: 103382.
de los Santos-Vázquez, M. E., A. Benavides-Mendoza, N. A. Ruiz-Torres, M. Cabrera-de la Fuente and Á. Morelos-Moreno. 2016. Sodium selenite treatment of vegetable seeds and seedlings and the effect on antioxidant status. Emir J. Food Agr. 589-593.
Ducsay, L., O. Ložek, M. Marček, M. Varényiová, P. Hozlár and T. Lošák. 2016. Possibility of selenium biofortification of winter wheat grain. Plant Soil Environ. 62(8): 379-383.
Franco-Bañuelos, A., S. Hernández-Trujillo, C. S. Contreras-Martínez, J. Carranza-Téllez and J. Carranza-Concha. 2019. Use of growth regulators on the total phenolic content and the antioxidant capacity of “red globe” grape. Agrociencia. 53(6): 881-894.
Garcia-Nava, M. A. 2009. Cuantificación de fenoles y flavonoides totales en extractos naturales. Universidad Autónoma de Querétaro Revista Academica 1: 1-4.
Garduño-Zepeda, A. and C. Márquez-Quiroz. 2018. Aplicación de selenio en cultivos agrícolas. Revisión bibliográfica. ITEA. informacion técnica económica agraria: revista de la Asociación Interprofesional para el Desarrollo Agrario. 114(4): 327-343.
Gaucín-Delgado, J. M., L. G. Hernández-Montiel, E. Sánchez-Chávez, H. Ortega-Ortiz, M. Fortis-Hernández, J. J. Reyes-Pérez and P. Preciado-Rangel. 2020. Agronomic biofortification with selenium improves the yield and nutraceutical quality in tomato under soilless conditions. Not. Bot. Horti. Agrobot. 48(3): 1221-1232.
Hernández-Hernández, H., T. Quiterio-Gutiérrez, G. Cadenas-Pliego, H. Ortega-Ortiz A. D. Hernández-Fuentes, M. Cabrera de la Fuente, J. Valdés-Reyna and A. Juárez-Maldonado. 2019. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants. 8(10): 355.
Jeong, S. T., N. Goto-Yamamoto, S. Kobayashi and M. J. P. S. Esaka. 2004. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci. 167(2): 247-252.
Kápolna, E., P. R. Hillestrøm, K. H. Laursen, S. Husted and E. H. Larsen. 2009. Effect of foliar application of selenium on its uptake and speciation in carrot. Food Chem. 115(4): 1357-1363.
Kuldeep, V., A. Yadav, H. Singh and D. Yadav. 2010. Effect of foliar spray of nutrients on fruit drop, yield and quality attributes of mango fruit (Mangifera indica L.) cv-Amrapali. Plant Arch. 10: 359-360.
Lapaz, A. d. M., L. F. d. M. Santos, C. H. P. Yoshida, R. Heinrichs, M. Campos and A. R. D. Reis. 2019. Physiological and toxic effects of selenium on seed germination of cowpea seedlings. Bragantia. 78(4) :498-508.
Li, M., Z. Zhao, J. Zhou, D. Zhou, B. Chen, L. Huang, Z. Zhang and X. Liu. 2018. Effects of a foliar spray of selenite or selenate at different growth stages on selenium distribution and quality of blueberries. Journal of the Science of Food and Agriculture, 98(12), 4700-4706. https://doi.org/10.1002/jsfa.9004
Lyons, G., I. Ortiz-Monasterio, J. Stangoulis and R. Graham. 2005. Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding?. Plant Soil. 269(1-2): 369-380.
Malagoli, M., M. Schiavon, S. Dall'Acqua and E. A. Pilon-Smits. 2015. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 6: 280.
Martínez-Flórez, S., J. González-Gallego, J. M. Culebras and M. J. Tuñón. 2002. Los flavonoides: propiedades y acciones antioxidantes. Nutrición Hospitalaria. 17(6): 271-278.
Mimmo, T., R. Tiziani, F. Valentinuzzi, L. Lucini, C. Nicoletto, P. Sambo, M. Scampicchio, Y. Pii and S. Cesco. 2017. Selenium Biofortification in Fragaria x ananassa: Implications on Strawberry Fruits Quality, Content of Bioactive Health Beneficial Compounds and Metabolomic Profile. Front Plant Sci. 8: 1887.
Molina-Quijada, D., L. Medina-Juárez, G. González-Aguilar, R. Robles-Sánchez and N. Gámez-Meza. 2010. Compuestos fenólicos y actividad antioxidante de cáscara de uva (Vitis vinifera L.) de mesa cultivada en el noroeste de México. Phenolic compounds and antioxidant activity of table grape (Vitis vinifera L.) skin from northwest Mexico. CyTA–J Food. 8(1): 57-63.
Mora, M., P. Durán, J. Acuña, P. Cartes, R. Demanet and L. Gianfreda. 2015. Improving selenium status in plant nutrition and quality. Journal of Soil Science Plant Nutrition. 15(2): 486-503.
Oliveira, V. C. d., V. Faquin, K. C. Guimarães, F. R. Andrade, J. Pereira and L. R. G. Guilherme. 2018. Agronomic biofortification of carrot with selenium. Ciência e Agrotecnologia. 42(2), 138-147. https://doi.org/10.1590/1413-70542018422031217
Peralta-Pérez, M. d. R. and T. Volke-Sepúlveda. 2012. La defensa antioxidante en las plantas: una herramienta clave para la fitorremediación. Rev Mex Ing Quim. 11(1): 75-88.
Ponavic, M. and A. Scheib. 2014. Distribution of Selenium in European Agricultural and Grazing Land Soil. pp. 131-144. In "Chemistry of Europe's Agricultural Soils" (C. Reimann, M. Birke, A. Demetriades, P. Filzmoser and P. O'Connor, eds.), vol. 103.
Porras-Loaiza, A. and A. López-Malo. 2009. Importancia de los grupos fenólicos en los alimentos. Temas Selectos de Ingeniería de Alimentos. 3(1): 121-134.
Puccinelli, M., F. Malorgio and B. Pezzarossa. 2017a. Selenium Enrichment of Horticultural Crops. Molcules. 22: 933.
Puccinelli, M., F. Malorgio, I. Rosellini and B. Pezzarossa. 2017b. Uptake and partitioning of selenium in basil (Ocimum basilicum L.) plants grown in hydroponics. Sci Hortic. 225: 271-276.
Rousserie, P., A. I. Rabot and L. Geny-Denis. 2019. From Flavanols Biosynthesis to Wine Tannins: What Place for Grape Seeds?. J. Agric. Food Chem. 67(5): 1325-1343.
Ruffner, H. 1982. Metabolism of tartaric and malic acids in Vitis: A review-Part B. Vitis. 21: 346-358.
Schiavon, M., S. Dall’acqua, A. Mietto, E. A. Pilon-Smits, P. Sambo, A. Masi and M. Malagoli. 2013. Selenium fertilization alters the chemical composition and antioxidant constituents of tomato (Solanum lycopersicon L.). J. Agric. Food Chem. 61(44): 10542-10554.
Shafiq, M., A. Qadir and S. Ahmad. 2019. Biofortification: A Sustainable Agronomic Strategy to Increase Selenium Content and Antioxidant Activity in garlic. Appl Ecol Env Res. 17(2): 1685-1704.
Silva-Trejos, P. 2011. Validación de la metodología analítica para cuantificación de Selenio en alimentos de la canasta básica del costarricense. Revista Costarricense de Salud Pública. 20(1): 31-35.
StatSoft Inc. 2011. Statistica. System reference. StatSoft, Inc., Tulsa, Oklahoma, EUA.
Valls, J., M. Lampreave, M. Nadal and L. Arola. 2000. Importacia de los compuestos fenolicos en la calidad de los vinos tintos de crianza. Alimentacion Equipos y Technologia. 19(2): 119-124.
Walteros, I., D. Molano, P. J. Almanza, M. Camacho and S. Gónzalez Almanza. 2012. Effect of pruning on chemical changes during fruit ripening of Vitis vinifera L. var. Cabernet Sauvig. Cultura Cientifica. 10: 8-15.
Weaver, R. 1985. "Cultivo de Uva". Segunda Impresión. Editorial Continental, México.
Willers, J., M. Heinemann, N. Bitterlich and A. Hahn. 2015. Intake of minerals from food supplements in a German population-a nationwide survey. Food Nutrition Sciences, 6(2), 205-215. https://doi.org/10.4236/fns.2015.62021
World Health Organization (WHO). 2009. Global Health Risks: Mortality and Burden of Disease Attribut-Ableto Selected Major Risks. Retrieved March 5 from http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_annex.pdf
Wu, Z., G. S. Bañuelos, Z.-Q. Lin, Y. Liu, L. Yuan, X. Yin and M. Li. 2015. Biofortification and phytoremediation of selenium in China. Front. Plant Sci. 6: 1-8.
Zahedi, S. M., M. S. Hosseini, N. D. H. Meybodi and J. A. T. da Silva. 2019. Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S. Afr. J. Bot. 124: 350-358.
Zhao, H., J. Huang, Y. Li, X. Song, J. Luo, Z. Yu and D. Ni. 2016. Natural variation of selenium concentration in diverse tea plant (Camellia sinensis) accessions at seedling stage. Sci. Hortic. 198: 163-169.
Zhu, S., Y. Liang, X. An, F. Kong, D. Gao and H. Yin. 2017. Changes in sugar content and related enzyme activities in table grape (Vitis vinifera L.) in response to foliar selenium fertilizer. J. Sci. Food Agric. 97: 4094-4102.
Published
2021-10-01
How to Cite
Sariñana-Navarrete, M. de los Ángeles, Hernández-Montiel, L. G., Sánchez-Chávez, E., Reyes Pérez, J. J., Murillo-Amador, B., & Preciado-Rangel, P. (2021). Foliar fertilization of sodium selenite and its effects on yield and nutraceutical quality in grapevine. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 38(4), 806-824. Retrieved from https://www.produccioncientificaluz.org/index.php/agronomia/article/view/36794
Section
Crop Production