Evaluación estratégica del impacto de la silvicultura en el medio ambiente para lograr el desarrollo sostenible

Palabras clave: Biodiversidad, balances de carbono, silvicultura, impacto socioeconómico, evaluación estratégica, desarrollo sostenible

Resumen

La relevancia del tema propuesto está impulsada por el cambio climático global y la urgente necesidad de optimizar la gestión de los recursos naturales. Los bosques desempeñan un papel central en el equilibrio global de carbono y son de gran importancia socioeconómica para las comunidades locales. La investigación tiene como objetivo analizar las estrategias de manejo forestal y sus impactos ambientales. El estudio se centra en los ecosistemas forestales en diferentes regiones y zonas climáticas. La metodología se basa en un análisis exhaustivo de la literatura científica, datos estadísticos y el examen de ejemplos prácticos. El artículo destaca la dinámica de la restauración de los ecosistemas forestales después de diferentes tipos de intervenciones en diferentes zonas climáticas, incluido el contexto ucraniano. Se evalúa el impacto de la gestión forestal en los balances globales de carbono y la esfera socioeconómica. La investigación muestra que las estrategias adaptativas pueden contribuir al desarrollo sostenible y la conservación de la biodiversidad. Las conclusiones proporcionan recomendaciones para la implementación de estas estrategias a nivel nacional, especialmente en Ucrania.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aguilar, F. X., Mirzaee, A., McGarvey, R. G., et al. (2020). Expansion of US wood pellet industry points to positive trends but the need for continued monitoring. Scientific Reports, 10, 18607. Available at: https://doi.org/10.1038/s41598-020-75403-z

Babst, F., Friend, A. D., Karamihalaki, M., Wei, J., et al. (2020). Modeling ambitions outpace observations of forest carbon allocation. Opinion 26(3), 210-219. Available at: https://doi.org/10.1016/j.tplants.2020.10.002

Bugmann, H., Seidl, R., Hartig, F., Bohn, F., Brůna, J., et al. (2019). Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere, 10(2). Available at: https://doi.org/10.1002/ecs2.2616

Burrascano, S., Chytrý, M., Kuemmerle, T., Giarrizzo, E., et al. (2016). Current European policies are unlikely to jointly foster carbon sequestration and protect biodiversity. Biological Conservation, 201, 370-376. Available at: https://doi.org/10.1016/j.biocon.2016.08.005

Charru, M., Seynave, I., Hervé, J. C., et al. (2017). Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats. Annals of Forest Science, 74(33). Available at: https://doi.org/10.1007/s13595-017- 0626-1

Closset-Kopp, D., Hattab, T., Decocq, G. (2019). Do drivers of forestry vehicles also drive herb layer changes (1970–2015) in a temperate forest with contrasting habitat and management conditions? Journal of Ecology, 107(3), 1439-1456. Available at: https://doi.org/10.1111/1365-2745.13118

Etzold, S., Ferretti, M., Reinds, G. J., Solberg, S., Gessler, A., et al. (2020). Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. Forest Ecology and Management, 458 (117762). Available at: https://doi.org/10.1016/j.foreco.2019.117762

European Commission (2020a). Stepping up Europe’s 2030 climate ambition – Investing in a climate-neutral future for the benefit of our people – Impact Assessment. SWD,176 final Part 1/2 and 2.

European Commission (2020b). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. EU Biodiversity Strategy for 2030. Bringing nature back into our lives. COM, 380 final. Brussels, 20.5.2020.

European Commission (2020c). A new Circular Economic Plan for a Cleaner and more competitive Europe, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions COM 98 final.

European Commission (2021a). Communication from the Commission to the European Parliament and the Council: Proposal for a regulation of European Parliament and of the Council on the making available on the Union market as well as export from the Union of certain commodities and products associated with deforestation and forest degradation and repealing Regulation (EU) No 995/2010. Brussels, 17.11.2021 COM, 706 final 2021/036.

European Commission (2021b). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: New EU Forest Strategy for 2030. COM, 572 final. Brussels, 6.7.2021.

European Commission (2021c). Proposal for a regulation of the European Parliament and of the Council amending Regulations (EU) 2018/842 on binding annual greenhouse gas emission reductions by Member States from 2021 to 2030, contributing to climate action to meet commitments under the Paris Agreement. COM, 555 final 2021/0200 (COD).

Hanssen, S. V., Daioglou, V., Steinmann, Z. J. N., Doelman, J. C., et al. (2020). The climate change mitigation potential of bioenergy with carbon capture and storage. Nature Climate Change, 10(11), 1023-1029. Available at: https://doi.org/10.1038/s41558-020-0885-y

Howard, C., Dymond, C. C., Griess, V. C., Tolkien-Spurr, D., van Kooten, G. C. (2021). Wood product carbon substitution benefits: a critical review of assumptions. Carbon Balance Management, 16, 1-11. Available at: https://doi.org/10.1186/s13021-021-00171-w

Hurmekoski, E., Myllyviita, T., Seppälä, J., Heinonen, T., Kilpeläinen, A., et al. (2020). Impact of structural changes in wood-using industries on net carbon emissions in Finland. Journal of Industrial Ecology, 24, 899-912. Available at: https://doi.org/10.1111/jiec.12981

Jåstad, E. O., Bolkesjø, T. F., Trømborg, E., Rørstad, P. K. (2020). The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector. Applied Energy, 274, 115360. Available at: https://doi.org/10.1016/j.apenergy.2020.115360

Kalliokoski, T., Bäck, J., Boy, M., Kulmala, M., Kuusinen, N., et al. (2020). Mitigation impact of different harvest scenarios of Finnish forests that account for albedo, aerosols, and trade- offs of carbon sequestration and avoided emissions. Frontiers in Forests and Global Change, 3. Available at: https://doi.org/10.3389/ffgc.2020.562044

Köhl, M., Linser, S., Prins, K., Talarczyk, A. (2021). The EU climate package “Fit for 55” – a double-edged sword for Europeans and their forests and timber industry. Forest Policy and Economics, 132, 102596. Available at: https://doi.org/10.1016/j.forpol.2021.102596

Lawrence, D., Coe, M., Walker, W., Verchot, L., Vandecar, K. (2022). The Unseen Effects of Deforestation: Biophysical Effects on Climate. Frontiers in Forests and Global Change, 5. Available at: https://doi.org/10.3389/ffgc.2022.756115

Luyssaert, S., Marie, G., Valade, A., Chen, Y.-Y., et al. (2018). Trade-offs in using European forests to meet climate objectives. Nature 562, 259262. Available at: https://doi.org/10.1038/s41586-018-0577-1

Myllyviita, T., Soimakallio, S., Judl, J., Seppälä, J. (2021). Wood substitution potential in greenhouse gas emission reduction – review on current state and application of displacement factors. Forest Ecosystems, 8, 42. Available at: https://doi.org/10.1186/s40663- 021-00326-8

Pendrill, F., Persson, U. M., Godar, J., Kastner, T. (2019). Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environmental Research Letters, 14, 055003. Available at: https://doi.org/10.1088/17489326/ab0d41

Pretzsch, H., Biber, P., Schütze, G., Kemmerer, J., Uhl, E. (2018). Wood density reduced while wood volume growth accelerated in Central European forests since 1870. Forest Ecology and Management, 429, 589-616. https://doi.org/10.1016/j.foreco.2018.07.045

Rittenhouse, C. D., Rissman, A. R. (2015). Changes in winter conditions impact forest management in north temperate forests. Journal of Environmental Management, 149, 157-167. Available at: https://doi.org/10.1016/j.jenvman.2014.10.010

Rosa, L., Sanchez, D. L., Mazzotti, M. (2021). Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe. Energy & Environmental, Science 14(5), 3086- 3097. Available at: https://doi.org/10.1039/D1EE00642H

Senf, C., Seidl, R. 2021. Mapping the forest disturbance regimes of Europe. Nature Sustainability, 4, 63-70. Available at: https://doi.org/10.1038/s41893-020-00609-y

Sommerfeld, A., Senf, C., Buma, B., D’Amato, A. W., Després, T., et al. (2018). Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 9, 4355. Available at: https://doi.org/10.1038/s41467-018-06788-9

Tolvanen, A., Saarimaa, M., Tuominen, S., Aapala, K. (2020). Is 15% restoration sufficient to safeguard the habitats of boreal red-listed mire plant species? Global Ecology and Conservation, 23, e01160. Available at: https://doi.org/10.1016/j.gecco.2020.e01160

Verkerk, P. J., Hassegawa, M., Van Brusselen, J., Cramm, M., et al. (2021). The role of forest products in the global bioeconomy – Enabling substitution by wood-based products and contributing to the Sustainable Development Goals. Rome, FAO on behalf of the Advisory Committee on Sustainable Forest-based Industries (ACSFI). Available at: https://doi.org/10.4060/cb7274en

Xie, S. H., Kurz, W. A., McFarlane, P. N. (2021). Inward versus outward-focused bioeconomy strategies for British Columbia’s Forest products industry: a harvested wood products carbon storage and emission perspective. Carbon Balance and Management, 16, 30. Available at: https://doi.org/10.1186/s13021-021-00193-4

Yu, K., Smith, W. K., Trugman, A. T., Condit, R., et al. (2019). Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proceedings of the National Academy of Sciences, 116(49), 24662-24667. Available at: https://doi.org/10.1073/pnas.1821387116

Zhu, Z., Piao, S., Myneni, R., Huang, M, Zeng, et al. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6, 791-795. Available at: https://doi.org/10.1038/nclimate3004
Publicado
2023-12-16
Cómo citar
Oshurkevych-Pankivska, O., Pankivskyi, Y., Zadorozhnyy, A., Reznichenko, V., & Kolomiiets, L. (2023). Evaluación estratégica del impacto de la silvicultura en el medio ambiente para lograr el desarrollo sostenible. Revista De La Universidad Del Zulia, 15(42), 322-336. https://doi.org/10.46925//rdluz.42.18