El impacto del cambio climático en el desarrollo de los cultivos de uva en el Oeste de Ucrania

Palabras clave: Cultivos, vitamina C, ácido málico, temperatura, precipitación

Resumen

El cambio climático es cada vez más notorio y afecta a la agricultura, en particular al cultivo de la vid, lo que determina la relevancia de la investigación. El objetivo es analizar el impacto del cambio climático en el desarrollo, rendimiento y calidad de los cultivos de uva. Para ello, el estudio se realizó en la zona de clima templado durante el período 2010-2022 mediante observaciones fenológicas y métodos químicos y organolépticos. Los resultados indican un retraso en las etapas fenológicas de la uva, particularmente en la brotación y floración más temprana, lo que puede afectar el rendimiento. También se han identificado cambios en la composición de las bayas, incluida una disminución de la vitamina C y de antocianinas y un aumento del contenido de azúcar debido al aumento de temperatura. Las recomendaciones incluyen la selección de variedades resistentes al clima, el uso de sistemas de riego y riego moderado. La novedad de la investigación radica en comprender el impacto del cambio climático en la uva en una región particular. Es de importancia estratégica para la adaptación de la agricultura a las nuevas condiciones. Otras investigaciones podrían centrarse en el uso de productos biológicos y de refrigeración para garantizar condiciones óptimas de crecimiento de las uvas y aumentar la resiliencia al cambio climático.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Olena Savina, Uzhhorod National University, Uzhhorod, Ukraine.

Doctor of Agricultural Sciences, Professor, Department of Fruit and Vegetable Cultivation and Viticulture, Uzhhorod National University, Uzhhorod, Ukraine.

Marharyta Hliudzyk-Shemota, Uzhhorod National University, Uzhhorod, Ukraine.

Candidate of Agricultural Sciences, Docent, Department of Fruit and Vegetable Cultivation and Viticulture,
Uzhhorod National University, Uzhhorod, Ukraine.

Nadija Sadovska, Uzhhorod National University, Uzhhorod, Ukraine.

Candidate of biological Sciences, Associate Professor, Department of Fruit and Vegetable Cultivation and
Viticulture, Uzhhorod National University, Uzhhorod, Ukraine.

Halyna Popovych, Uzhhorod National University, Uzhhorod, Ukraine.

Candidate of Biological Sciences, Docent, Department of Fruit and Vegetable Cultivation and Viticulture, Uzhhorod National University, Uzhhorod, Ukraine.

Karolina Sheydyk, Uzhhorod National University, Uzhhorod, Ukraine.

Candidate of Agricultural Sciences, Docent, Department of Fruit and Vegetable Cultivation and Viticulture,
Uzhhorod National University, Uzhhorod, Ukraine.

Olesia Vantiukh, Uzhhorod National University, Uzhhorod, Ukraine.

Candidate of Agricultural Sciences, Associate Professor, Department of Fruit and Vegetable Cultivation and Viticulture, Uzhhorod National University, Uzhhorod, Ukraine.

Citas

Alikadic, A., Pertot, I., Eccel, E., Dolci, C., Zarbo, C., Caffarra, A. (2019). The impact of climate change on grapevine phenology and the influence of altitude: a regional study. Agricultural and Forest Meteorology, 271, 73-82. https://doi.org/10.1016/j.agrformet.2019.02.030

Arias, L. A., Berli, F., Fontana, A., Bottini, R., Piccoli, P. (2022). Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. Frontiers in Plant Science, 13, 835425. https://doi.org/10.3389/fpls.2022.835425

Arrizabalaga-Arriazu, M., Gomès, E., Morales, F., Irigoyen, J. J., Pascual, I., Hilbert, G. (2020). High temperature and elevated carbon dioxide modify berry composition of different clones of grapevine (Vitis vinifera L.) cv. Tempranillo. Frontiers in Plant Science, 11, 1888. https://doi.org/10.3389/fpls.2020.603687

Blancquaert, E. H., Oberholster, A., Ricardo-da-Silva, J. M., Deloire, A. J. (2019). Effects of abiotic factors on phenolic compounds in the grape Nerry-a review. South African Journal of Enology and Viticulture, 40, 1-14. https://doi.org/10.21548/40-1-3060

Cabré, M. F., Nuñez, M. (2020). Impacts of climate change on viticulture in Argentina. Regional Environmental Change, 20, 1–12. https://doi.org/10.1007/s10113-020-01607-8

Cardell, M. F., Amengual, A., Romero, R. (2019). Future effects of climate change on the suitability of wine grape production across Europe. Regional Environmental Change, 19, 2299- 2310. https://doi.org/10.1007/s10113-019-01502-x

Cola, G., Mariani, L., Maghradze, D., Failla, O. (2020). Changes in thermal resources and limitations for Georgian viticulture. Australian Journal of Grape and Wine Research, 26(1), 29–40. https://doi.org/10.1111/ajgw.12412

Drappier, J., Thibon, C., Rabot, A., Geny-Denis, L. (2019). Relationship between wine composition and temperature: impact on Bordeaux wine typicity in the context of global warming. Critical Reviews in Food Science and Nutrition, 59, 14-30. https://doi.org/10.1080/10408398.2017.1355776

Dunn, M., Rounsevell, M. D., Boberg, F., Clarke, E., Christensen, J., Madsen, M. S. (2019). The future potential for wine production in Scotland under high-end climate change. Regional Environmental Change, 19, 723-732. https://doi.org/10.1007/s10113-017-1240-3

Fraga, H. (2020). Climate change: a new challenge for the winemaking sector. Agronomy, 10, 1465. https://doi.org/10.3390/agronomy10101465

Gaiotti, F., Pastore, C., Filippetti, I., Lovat, L., Belfiore, N., Tomasi, D. (2018). Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis vinifera L.). Scientific Reports, 8, 1-13. https://doi.org/10.1038/s41598-018-26921-4

Kelly, J., Inglis, D., Dowling, L., Pickering, G. (2022). Impact of Botrytis cinerea-infected grapes on quality parameters of red wine made from withered grapes. Australian Journal of Grape and Wine Research, 28(3), 439-449. https://doi.org/10.1111/ajgw.12545

Kolstad, C. D., Moore, F. C. (2020). Estimating the Economic Impacts of Climate Change Using Weather Observations. Review of Environmental Economics and Policy, 14(1), 1–24. https://doi.org/10.1093/reep/rez024

Leolini, L., Costafreda-Aumedes, S., Santos, J. A., Menz, C., Fraga, H., Molitor, D. (2020). Phenological model intercomparison for estimating grapevine Budbreak date (Vitis vinifera L.) in Europe. Applied Sciences, 10, 3800. https://doi.org/10.3390/app10113800

Liles, C., Verdon-Kidd, D. (2020). Refining the growing season temperature parameter for use in winegrape suitability analysis. Australian Journal of Grape and Wine Research, 26(4), 343– 357. https://doi.org/10.1111/ajgw.12447

Mansour, G., Ghanem, C., Mercenaro, L., Nassif, N., Hassoun, G., Del Caro, A. (2022). Effects of altitude on the chemical composition of grapes and wine: a review. OENO One, 56, 227-239. https://doi.org/10.20870/oeno-one.2022.56.1.4895

Marfil, C., Ibáñez, V., Alonso, R., Varela, A., Bottini, R., Masuelli, R. (2019). Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and ABA spray treatments. Plant Physiology and Biochemistry, 135, 287– 294. https://doi.org/10.1016/j.plaphy.2018.12.021

Martínez-Gil, A. M., Gutiérrez-Gamboa, G., Garde-Cerdán, T., Pérez-Álvarez, E. P., Moreno-Simunovic, Y. (2018). Characterization of phenolic composition in Carignan noir grapes (Vitis vinifera L.) from six wine-growing sites in Maule Valley, Chile. Journal of the Science of Food and Agriculture, 98, 274–282. https://doi.org/10.1002/jsfa.8468

Muñoz, F. A., Urvieta, R. A., Buscema, F., Rasse, M., Fontana, A. R., Berli, F. J. (2021). Phenolic characterization of Cabernet Sauvignon wines from different geographical indications of Mendoza, Argentina: effects of plant material and environment. Trends in Plant Science, 5, 1523. https://doi.org/10.3389/fsufs.2021.700642

Naulleau, A., Gary, C., Prévot, L., Hossard, L. (2021). Evaluating strategies for adaptation to climate change in grapevine production – a systematic review. Frontiers in Plant Science, 11, 2154, https://doi.org/10.3389/fpls.2020.607859

Plank, C. M., Hellman, E. W., Montague, T. (2019). Light and temperature independently influence methoxypyrazine content of Vitis vinifera (cv. Cabernet Sauvignon) berries. HortScience, 54, 282–288. https://doi.org/10.21273/HORTSCI13634-18

Ramos, M. C., de Toda, F. M. (2020). Variability in the potential effects of climate change on phenology and on grape composition of Tempranillo in three zones of the Rioja DOCa (Spain). European Journal of Agronomy, 115, 126014. https://doi.org/10.1016/j.eja.2020.126014

Rienth, M., Lamy, F., Schoenenberger, P., Noll D., Lorenzini, F., Viret, O. (2020). A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland: This article is published in cooperation with the XIIIth international Terroir Congress November 17-18 2020, Adelaide, Australia, Guest editors: Cassandra Collins and Roberta De Bei. OENO One, 54, 863–880. https://doi.org/10.20870/oeno-one.2020.54.4.3756

Teslić, N., Vujadinović, M., Ruml, M., Ricci, A., Vuković, A., Parpinello, G. P. (2019). Future climatic suitability of the Emilia-Romagna (Italy) region for grape production. Regional Environmental Change, 19, 599-614. https://doi.org/10.1007/s10113-018-1431-6

Theron, H., Hunted, J. J. (2022). Mitigation and Adaptation Practices to the Impact of Climate Change on Wine Grape Production, with Special Reference to the South African Context. South African Journal of Enology and Viticulture, 43(1). http://dx.doi.org/10.21548/43-1- 4735

Urvieta, R., Jones, G., Buscema, F., Bottini, R., Fontana, A. (2021). Terroir and vintage discrimination of Malbec wines based on phenolic composition across multiple sites in Mendoza, Argentina. Scientific Reports, 11, 1-13. https://doi.org/10.1038/s41598-021-82306-0

Venios, X., Korkas, E., Nisiotou, A., Banilas, G. (2020). Grapevine responses to heat stress and global warming. Plants, 9(12), 1-15. https://doi.org/10.3390/plants9121754

Wohlfahrt, Y., Patz, C. D., Schmidt, D., Rauhut, D., Honermeier, B., Stoll, M. (2021). Responses on must and wine composition of Vitis vinifera L. cvs. Riesling and cabernet sauvignon under a free air CO2 enrichment (FACE). Foods, 10, 145. https://doi.org/10.3390/foods10010145

Yan, Y., Song, C., Falginella, L., Castellarin, S. D. (2020). Day temperature has a stronger effect than night temperature on anthocyanin and flavonol accumulation in ‘merlot’ (Vitis vinifera L.) grapes during ripening. Frontiers in Plant Science, 11, 1095. https://doi.org/10.3389/fpls.2020.01095

Zamorano, D., Franck, N., Pastenes, C., Wallberg, B., Garrido, M., Silva, H. (2021). Improved physiological performance in grapevine (Vitis vinifera L.) cv. Cabernet Sauvignon facing recurrent drought stress. Australian Journal of Grape and Wine Research, 27(3), 258-268. https://doi.org/10.1111/ajgw.12482
Publicado
2023-12-15
Cómo citar
Savina, O., Hliudzyk-Shemota, M., Sadovska, N., Popovych, H., Sheydyk, K., & Vantiukh, O. (2023). El impacto del cambio climático en el desarrollo de los cultivos de uva en el Oeste de Ucrania. Revista De La Universidad Del Zulia, 15(42), 37-57. https://doi.org/10.46925//rdluz.42.03