Evaluation of local expressions of acute phase proteins in white muscle disease in lambs by the immunohistochemical method

  • Ozhan Karatas Sivas Cumhuriyet University, Faculty of Veterinary Medicine, Department of Pathology. Merkez, Sivas, Türkiye
  • Gokhan Akcakavak Yozgat Bozok University, Faculty of Veterinary Medicine, Department of Pathology. Sorgun, Yozgat, Türkiye
Keywords: White muscle disease, immunohistochemistry, C–reactive protein, serum amyloid–A, haptoglobin

Abstract

White muscle disease (WMD) and/or nutritional muscular dystrophy is defined as a disease with a generally acute course that results in degeneration and necrosis of the heart muscle. In this study, it was aimed to reveal local tissue expressions of acute phase proteins such as C–reactive protein (CRP), Serum amyloid–A (SAA) and Haptoglobin (Hp) in lambs with WMD. The study material consisted of 27, one–six months old lamb heart tissues, 6 of which were healthy and 21 with WMD. The lambs were necropsied, and the relevant heart samples were taken into neutral formaldehyde. Afterwards, paraffin blocks were obtained by going through routine tissue follow–up processes. Sections were taken from paraffin blocks and stained with Hematoxylin–Eosin (H–E) and Immunohistochemical methods. Histopathologically, control groups exhibited normal histology. Hyaline degeneration, Zenker necrosis, calcification, inflammatory cell infiltration and an increase in connective tissue were detected in the heart tissues of lambs with WMD. Lambs with WMD had significantly increased CRP and SAA proteins compared to control (P<0.01). However, there was no difference between the groups in Hp (P>0.05). In conclusion, local tissue expressions of CRP, SAA and Hp in lambs with WMD were identified immunohistochemically for the first time. It is possible to say that CRP and SAA may play important roles in the pathophysiology of WMD and that CRP and SAA may provide more sensitive results in the diagnosis and prognosis of the disease.

Downloads

Download data is not yet available.

References

Dierenfeld ES. Vitamin E deficiency in zoo reptiles, birds, and ungulates. J. Zoo. Wildl. Med. [Internet]. 1989 [cited 20 July 2023]; 20(1):3–11. Available in: https://bit.ly/4akKt6j.

Abutarbush SM, Radostits OM. Congenital nutritional muscular dystrophy in a beef calf. [Internet]. Can. Vet. J. 2003 [cited 18 July 2023]; 44(9):738–739. Available in: https://bit.ly/3GMGbXI. Cited in: PubMed; PMID:14524629.

Yavuz O. The pathological investigations on nutritional myopathy causing lamb deaths in neonatal period. J. Bahri Dagdas Anim. Res. [Internet]. 2017 [cited 18 July 2023]; 6(2):1–8. Available in: https://bit.ly/3Tn2U4g.

Karakurt E, Karataş Ö, Dağ S, Beytut E, Mendil AS, Nuhoğlu H, Yıldız A. Evaluation of 4–Hydroxy–2–Nonenal, Dityrosine and 8–Hydroxy–2–Deoxyguanosine Expressions in Lambs with White Muscle Disease. Firat Univ. Saglik Bilim. Vet. Derg. [Internet] 2021 [cited 23 May 2023]; 35(2):109–113. Available in: https://bit.ly/3TvU1p1.

Kandeel M, Al–Taher A, Venugopala KN, Marzok M, Morsy M, Nagaraja S. Camel Proteins and Enzymes: A Growing Resource for Functional Evolution and Environmental Adaptation. Front. Vet. Sci. [Internet]. 2022; 9:911511. doi: https://doi.org/gstj65

White C, Rewell L. Vitamin E and selenium status of sheep during autumn in Western Australia and its relationship to the incidence of apparent white muscle disease. Aust. J. Exp. Agric. [Internet]. 2007; 47(5):535–543. doi: https://doi.org/d58mqj

Ortiz–Morales O, Ramírez–Bribiesca JE, Hernández–Bautista J, Hernandez–Sanchez D, Bárcena–Gama JR, Hernández–Trujillo E, Díaz–Sánchez VM, Garrido–Fariña G, López–Ojeda JC, Hernández–Rodriguez M. Effect of Supranutritional Dosage Selenium in Neonatal Goat Kids on Productive Performance, Physicochemical Profiles in Meat, Selenium Levels in Tissues, and Histopathological Findings. Biol. Trace. Elem. Res. [Internet]. 2023: 201:4374–4388. doi: https://doi.org/k8z6

McDowell LR, Valle G, Cristaldi L, Davis PA, Rosendo O, Wilkinson NS. Selenium availability and methods of selenium supplementation for grazing ruminants. Proceedings 13th. Annual Florida Ruminant Nutrition Symposium.Gainesville, Florida, USA: IFAS, University of Florida. 2002. p. 86–102.

Tórtora–Pérez J. The importance of selenium and the effects of its deficiency in animal health. Small Rumin. Res. [Internet]. 2010; 89(2–3):185–192. doi: https://doi.org/frz8tv

Cooper B, Valentine B. Chapter 3. Muscle and tendon. In: Maxie MG, editor. Jubb, Kennedy and Palmer’s Pathology of Domestic Animals: Volume 1. 6th ed. Philadelphia, USA: Saunders LTD. 2015: p 214–218.

McDowell L, Williams S, Hidiroglou N, Njeru C, Hill G, Ochoa L, Wilkinson NS. Vitamin E supplementation for the ruminant. Anim. Feed Sci. Technol. [Internet]. 1996; 60(3–4):273–296. doi: https://doi.org/cczm44

Ataollahi F, Mohri M, Seifi HA, Pingguan–Murphy B, Wan Abas WAB, Osman NAA. Evaluation of copper concentration in subclinical cases of white muscle disease and its relationship with cardiac troponin I. PLoS One. [Internet]. 2013; 8(2):e56163. doi: https://doi.org/f4k66r

Kozat S, Gunduz H, Deger Y, Mert N, Yoruk IH, Sel T. Studies on serum α–tocopherol, selenium levels and catalase activities in lambs with white muscle disease. Bull. Vet. Inst. Pulawy. 2007; 51(2):281–284.

Yumusak N, Yigin A, Polat PF, Hitit M, Yilmaz R. Expression of ADAMTS–7 in myocardial dystrophy associated with white muscle disease in lambs. Pol. J. Vet. Sci. [Internet]. 2018; 21(1):119–126. doi: https://doi.org/k8z7

Kozat S, Altug N, Yuksek N, Ozkan C. Evaluation of the levels of homocysteine, troponin I, and nitric oxide in lambs with subclinical white muscle disease. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2011; 17(3):441–444. doi: https://doi.org/k8z8

Nizamlıoğlu M, Tiftik AM, Turgut K, ve Traş B. [Investigation of Vitamin E, Glutamic oxalacetic transaminase (GOT), creatine kinase (CK) and lactate dehydrogenase (LDH) activities in white muscle disease of lambs]. Doğa Türk Vet. Hay. Derg. 1991; 15:59–64.Turkish.

Keleş İ, Dede S, Keleş H, Değer Y, Altuğ N. Studies on some antioxidant vitamin concentrations in lambs with stiff–lamb disease. Yüzüncü Yıl Univ. Vet. Fak. Derg. 2000; 11(1):79–82.

Beytut E, Erişir M, Aksakal M. [Reduced glutathione and malondialdehyde levels with catalase enzyme activity in the heart, skeletal muscle and liver of lambs with white muscle disease]. Kafkas Univ. Vet. Fak. Derg. 2001; 7(1):1–5. Turkish.

Arshad MA, Ebeid HM, Hassan F–u. Revisiting the effects of different dietary sources of selenium on the health and performance of dairy animals: a review. Biol. Trace Elem. Res. [Internet]. 2021; 199:3319–3337. doi: https://doi.org/gpbgsw

Paynter DI. Diagnosis of mineral deficiencies. In: Master DG, White CL, editors. Detection and Treatment of Mineral Nutrition Problem in Grazing Sheep. Canberra, Australia: Australian Centre for International Agricultural Research. 1996. p. 45–56. ACIAR Monograph N° 37.

Gunes V, Ozcan K, Citil M, Onmaz AC, Erdogan HM. Detection of myocardial degeneration with point–of–care cardiac troponin assays and histopathology in lambs with white muscle disease. Vet. J. [Internet]. 2010; 184(3):376–378. doi: https://doi.org/bqjz3h

Murata H, Shimada N, Yoshioka M. Current research on acute phase proteins in veterinary diagnosis: an overview. Vet. J. [Internet]. 2004; 168(1):28–40. doi: https://doi.org/c8tdm3

Petersen HH, Nielsen JP, Heegaard PMH. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. [Internet]. 2004; 35(2):163–187. doi: https://doi.org/bjtm9p

Cerón JJ, Eckersall PD, Martínez‐Subiela S. Acute phase proteins in dogs and cats: current knowledge and future perspectives. Vet. Clin. Pathol. [Internet]. 2005; 34(2):85–99. doi: https://doi.org/cm573x

Cray C, Zaias J, Altman NH. Acute phase response in animals: a review. Comp. Med. 2009; 59(6):517–526. Cited in: PubMed; PMID: 20034426.

Eckersall P, Bell R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. The Vet. J. [Internet]. 2010; 185(1):23–27. doi: https://doi.org/fb64df

Coşkun A, İsmail Ş. [Clinical Use of Acute Phase Proteins in Cattle]. Saglik Bilim. Derg. [Internet] 2011; [cited 18 May 2023]; 20(3):240–246. Turkish. Available in: https://bit.ly/4anQaQU.

Pathak A, Agrawal A. Evolution of C–reactive protein. Frontiers immunol. 2019; 10:943. doi: https://doi.org/k82x

Niu W, Wan Y, Li M, Wu Z, Zhang L, Wang J. The diagnostic value of serum procalcitonin, IL–10 and C–reactive protein in community acquired pneumonia and tuberculosis. Eur. Rev. Med. Pharmacol. Sci. 2013; 17(24):3329–3333. Cited in: PubMed; PMID: 24379064.

Horadagoda NU, Knox KMG, Gibbs HA, Reid SWJ, Horadagoda A, Edwards SER, Eckersall PD. Acute phase proteins in cattle: discrimination between acute and chronic inflammation. Vet. Rec. [Internet]. 1999; 144(16):437–441. doi: https://doi.org/bt6hb6

Jain S, Gautam V, Naseem S. Acute–phase proteins: As diagnostic tool. Pharm Bioallied Sci. [Internet]. 2011; 3(1):118–127. doi: https://doi.org/dhncrg

Zhang Y, Zhang J, Sheng H, Li H, Wang R. Chapter Two–Acute phase reactant serum amyloid A in inflammation and other diseases. In: Makowski GS, editor. Advances in Clinical Chemistry. Vol 90. [Internet]. Cambridge (MA), USA: Academic Press. 2019. p. 25–80. doi: https://doi.org/k82z

De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and expression of different serum amyloid A (SAA) variants and their concentration–dependent functions during host insults. Curr Med Chem. [Internet]. 2016; 23(17):1725–1755. doi: https://doi.org/gk5wqh

Urieli–Shoval S, Linke RP, Matzner Y. Expression and function of serum amyloid A, a major acute–phase protein, in normal and disease states. Curr. Opin. Hematol. [Internet]. 2000; 7(1):64–69. doi: https://doi.org/cfqsv2

El–Deeb W, Fayez M, Elsohaby I, Salem M, Alhaider A, Kandeel M. Investigation of acute–phase proteins and cytokines response in goats with contagious caprine pleuropneumonia with special reference to their diagnostic accuracy. Peer J. [Internet]. 2020; 8:e10394. doi: https://doi.org/gpgxkc

Kazak F, Deveci MZY, Akcakavak G. Eucalyptol alleviates cisplatin–induced kidney damage in rats. Drug. Chem. Toxicol. [Internet]. 2022; 1–8. doi: https://doi.org/k823

American Registry of Pathology; Luna LG, editor. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed. New York: Mc Graw–Hill. 1968. 258 p.

Akcakavak G, Kazak F, Deveci MZY. Eucalyptol Protects against Cisplatin–Induced Liver Injury in Rats. Biol. Bull. [Internet]. 2023; 50:987–994. doi: https://doi.org/k824

Dabak M, Karataş F, Gül Y, Kizil Ö. Investigation of selenium and vitamin e deficiency in beef cattle. Turkish J. Vet. Anim. Sci. [Internet] 2002 [cited 24 April 2023]; 26(4):741–746. Available in: https://bit.ly/47ZTzUw.

Abramson JL, Hooper WC, Jones DP, Ashfaq S, Rhodes SD, Weintraub WS, Harrison DG, Quyyumi AA, Vaccarino V. Association between novel oxidative stress markers and C–reactive protein among adults without clinical coronary heart disease. Atherosclerosis. [Internet]. 2005; 178(1):115–121. doi: https://doi.org/cmk2xg

Cottone S, Mulè G, Nardi E, Vadalà A, Guarneri M, Briolotta C, Arsena R, Palermo A, Riccobene R, Cerasola G. Relation of C–reactive protein to oxidative stress and to endothelial activation in essential hypertension. Am. J. Hypertens. [Internet]. 2006; 19(3):313–318. doi: https://doi.org/bdgb69

Noren–Hooten N, Ejiogu N, Zonderman AB, Evans MK. Association of oxidative DNA damage and C–reactive protein in women at risk for cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. [Internet]. 2012; 32(11):2776–2784. doi: https://doi.org/k825

Eklund KK, Niemi K, Kovanen P. Immune functions of serum amyloid A. Crit. Rev. Immunol. [Internet]. 2012; 32(4):335–348. doi: https://doi.org/gk54gq

Joshi V, Gupta VK, Bhanuprakash AG, Mandal RSK, Dimri U, Ajith Y. Haptoglobin and serum amyloid A as putative biomarker candidates of naturally occurring bovine respiratory disease in dairy calves. Microb. Pathog. [Internet]. 2018; 116:33–37. doi: https://doi.org/gdd72z

Published
2024-01-02
How to Cite
1.
Karatas O, Akcakavak G. Evaluation of local expressions of acute phase proteins in white muscle disease in lambs by the immunohistochemical method. Rev. Cient. FCV-LUZ [Internet]. 2024Jan.2 [cited 2024May15];34(1):7. Available from: https://www.produccioncientificaluz.org/index.php/cientifica/article/view/41451
Section
Veterinary Medicine