Detection of SARS–CoV–2 antibodies in dogs in contact with COVID–19 positive humans

  • Roberto Danilo Chiliquinga-Quinchiguano Universidad Católica de Cuenca. Cuenca, Azuay, Ecuador
  • Nathalie Campos-Murillo Universidad Católica de Cuenca. Cuenca, Azuay, Ecuador
  • Edy Castillo-Hidalgo Universidad Católica de Cuenca. Cuenca, Azuay, Ecuador https://orcid.org/0000-0001-5311-5002
Keywords: SARS–CoV–2, immunoglobulins, IgG, IgM, canines

Abstract

The objective of this study was to detect the presence of IgG and IgM antibodies for SARS–CoV–2 in pets that had contact with COVID–19 positive humans from the Parish of Alangasí belonging to the City of Quito, Ecuador, during the first half of 2022. To do this, 40 canine patients of different ages and sex were studied, who came to medical appointments at the RoChi-Vet veterinary center, to which the respective clinical history was made. For the study of Immunoglobulins and other liver analytes (TGP and TGO), blood samples were obtained by puncture of the cephalic vein, in tubes with EDTA content, which were sent to SERVILAB laboratories to determine the presence of Immunoglobulins (Ig), using the immunofluorescence method, in addition to determining the integrity of the liver through a spectrophotometer. The data obtained from Ig, TGP and TGO were compared with the patient’s clinical history, and the possible effects between the variables studied using SAS statistical package, it was analyzed using descriptive statistics, Chi-square and correlations. The results obtained showed that for the values of IgG and IgM antibodies, at least 2 of the serums tested positive for SARS–CoV–2, with a prevalence in this study of 5%; and additionally, the values of TGP and TGO were not indicative of any pathology in the liver’s integrity, although one individual was found with a slightly high TGP value and four with values slightly lower than normal for the same transaminase. The ANAVA indicated the absence of effect (P>0.05) of age or sex on the probability of suffering or not from SARS–CoV–2; as well as the non-existence of correlation between the values of Ig and the transaminases evaluated. Finally, it can be indicated that although it is a sensitive tool for the diagnosis of SARS–CoV–2 in dogs; there is no evidence that there is a probability of transmission and contagion from the human being (owner) to their pets and much less in the form of reverse zoonotic contagion.

Downloads

Download data is not yet available.

References

ABDEL–MONEIM, A. S.; ABDELWHAB, E.M. Evidence for SARS–CoV–2 Infection of Animal Hosts. Pathogens. 9(7): 529. 2020. https://doi.org/gg4fzt.

AGUILAR, N.; HERNÁNDEZ, A.; GUTIERREZ, C. Descripción del virus Características del SARS–CoV–2 y sus mecanismos de transmisión SARS–CoV–2. Rev. Latin. Infect. Pediatr. 33(3): 143–148. 2020. https://doi.org/h969.

BOSCO–LAUTH, A.M.; HARTWIG, A.E.; PORTER, S.M.; GORDY, P.W.; NEHRING, M.; BYAS, A.D.; VANDEWOUDE, S.; RAGAN, I.K.; MAISON, R.M.; BOWEN, R.A. Experimental infection of domestic dogs and cats with SARS–CoV–2: Pathogenesis, transmission, and response to reexposure in cats. Proceed. Nation. Academy Sci. 117(42): 26382–26388. 2020. https://doi.org/ghj9d7.

CABRERA, A.; GONZÁLEZ–ÁLVAREZ, D.; GUTIÉRREZ, L.A.; DÍAZ, F.J.; FORERO, D.; RODAS, J.D. Infección natural de SARS–CoV–2 en gatos y perros domésticos de humanos diagnosticados con COVID–19 en el Valle de Aburrá, Antioquia. Biomed. 42: e6407. 2022.

CALVET, G.A.; PEREIRA, S.A.; OGRZEWALSKA, M.; PAUVOLID–CORRÊA, A.; RESENDE, P.C.; TASSINARI, W.S.; COSTA, A.P.; KEIDEL, L.O.; DA ROCHA, A.S.B.; DA SILVA, M.F.B.; DOS SANTOS, S.A.; LIMA, A.B.M.; DE MORAES, I.C.V.; MENDES–JUNIOR, A.A.V.; SOUZA, T.D.C.; MARTINS, E.B.; ORNELLAS, R.O.; CORRÊA, M.L.; ANTONIO, I.M.; GUARALDO, L.; MOTTA, F.D.C.; BRASIL, P.; SIQUEIRA, M,M,; GREMIÃO, I.D.; MENEZES, R,C.. Investigation of SARS–CoV–2 infection in dogs and cats of humans diagnosed with COVID–19 in Rio de Janeiro, Brazil. PLoS One. 16:e0250853. 2021.

CENTER FOR DISEASE CONTROL AND PREVENTION (CDC–COVID–19). Animals and COVID–19. 2020. Center for Disease Control and Prevention (CDC). EUA. En línea: https://bit.ly/3AKt8CS. 02/04/2022.

COHEN, J. From mice to monkeys, animals studied for coronavirus answers Infected lab animals can assess drugs and vaccines. Sci. 368: 221–222. 2020.

COLINA, S.; ASPITIA, C.; NOGUEIRAS, J.; SERENA, M.; ECHEVERRIA, M.; METZ, G. The third great leap: animal coronaviruses in Latin America. Analecta Vet. 41(2): e059. 2021.

CSISZAR, A.; JAKAB, F.; VALENCAK, T.G.; LANSZKI, Z.; TÓTH, G.E.; KEMENESI, G.; TARANTINI, S.; FAZEKAS–PONGOR, V.; UNGVARI, Z. Companion animals likely do not spread COVID–19 but may get infected themselves. GeroSci. 42(5): 1229–1236. 2020. https://doi.org/gk7d9s.

DECARO, N.; BALBONI, A.; BERTOLOTTI, L.; MARTINO, P. A.; MAZZEI, M.; MIRA, F.; AGNINI, U. SARS–CoV–2 Infection in Dogs and Cats: Facts and Speculations. Frontiers in Vet. Sci. 8: 80. 2021. https://doi.org/h97b.

FREULING, C M.; BREITHAUPT, A.; MÜLLER, T.; SEHL, J.; BALKEMA–BUSCHMANN, A.; RISSMANN, M.; KLEIN, A.; WYLEZICH, C.; HÖPER, D.; WERNIKE, K.; AEBISCHER, A.; HOFFMANN, D.; FRIEDRICHS, V.; DORHOI, A.; GROSCHUP, M.H.; BEER, M.; ETTENLEITER, T.C. Susceptibility of Raccoon Dogs for Experimental SARS–CoV–2 Infection. Emerg. Infect. Dis. 26(12): 2982. 2020. https://doi.org/ffzf.

FRITZ, M.; ROSOLEN, B.; KRAFFT, E.; BECQUART, P.; ELGUERO, E.; VRATSKIKH, O.; DENOLLY, S.; BOSON, B.; VANHOMWEGEN, J.; GOUILH, M. A.; KODJO, A.; CHIROUZE, C.; ROSOLEN, S.G.; LEGROS, V.; LEROY, E.M. High prevalence of SARS–CoV–2 antibodies in pets from COVID–19+ households. One Health. 11: 100192. 2020. https://doi.org/gk7fbm.

HOSSAIN, M.G.; JAVED, A.; AKTER, S.; SAHA, S. SARS–CoV–2 host diversity: An update of natural infections and experimental evidence. J. Microbiol. Immunol. Infect. 54(2): 175–181. 2021. https://doi.org/gg4s87.

HU, B.; GUO, H.; ZHOU, P.; SHI, Z.L. Characteristics of SARS–CoV–2 and COVID–19. Nat. Rev. Microbiol. 19: 141–154. 2021.

KLAUS, J.; ZINI, E.; HARTMANN, K.; EGBERINK, H.; KIPAR, A.; BERGMANN, M.; PALIZZOTTO, C.; ZHAO, S.; ROSSI, F.; FRANCO, V.; PORPORATO, F.; HOFMANN–LEHMANN, R.; MELI, M.L. SARS–CoV–2 Infection in Dogs and Cats from Southern Germany and Northern Italy during the First Wave of the COVID–19 Pandemic. Viruses. 13(8):1453. 2021. https://doi.org/h97h.

LAIDOUDI, Y.; SEREME, Y.; MEDKOUR, H.; WATIER–GRILLOT, S.; SCANDOLA, P.; GINESTA, J.; ANDRÉO, V.; LABARDE, C.; COMTET, L.; POURQUIER, P.; RAOULT, D.; MARIÉ, J.L.; DAVOUST, B. SARS–CoV–2 antibodies seroprevalence in dogs from France using ELISA and an automated Western blotting assay. One Health. 13: 100293. 2021. https://doi.org/h97c.

LAU, S.K.P.; LUK, H.K.H.; WONG, A.C.P.; LI, K.S.M.; ZHU, L.; HE, Z., FUNG, J.; CHAN, T.T.Y.; FUNG, K.S.C.; WOO, P.C.Y. Possible bat origin of Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 26: 1542–1547. 2020.

MAGUIÑA–VARGAS, C.; GASTELO–ACOSTA, R.; TEQUEN–BERNILLA, A. El nuevo Coronavirus y la pandemia del Covid–19. Rev. Med. Herediana. 31(2): 125–131. 2020. https://doi.org/gh9h.

MEEKINS, D.A.; GAUDREAULT, N.N.; RICHT, J.A. Natural and experimental SARS–CoV–2 infection in domestic and wild animals. Viruses. 13: 1993. 2021.

NEWMAN, A.; SMITH, D.; GHAI, R. R.; WALLACE, R. M.; TORCHETTI, M. K.; LOIACONO, C.; MURRELL, L.S.; CARPENTER, A.; MOROFF, S.; ROONEY, J.A.; BEHRAVESH, C.B. First Reported Cases of SARS–CoV–2 Infection in Companion Animals—New York, March–April 2020. Morb. Mort. Week. Rep. 69(23): 710. 2020. https://doi.org/ghc7tm.

OFFICE INTERNATIONAL DES EPIZOOTIES (OIE). Infeccion por SARS–COV–2 en animales (Ficha Tecnica de Enfermedad). 2021. OIE. EUA. En línea: https://doi.org/h97d. 24/04/2022.

PATTERSON, E.I.; ELIA, G.; GRASSI, A.; GIORDANO, A.; DESARIO, C.; MEDARDO, M.; SMITH, S.L.; ANDERSON, E.R.; PRINCE, T.; PATTERSON, G.T.; LORUSSO, E.; LUCENTE, M.S.; LANAVE, G.; LAUZI, S.; BONFANTI, U.; STRANIERI, A.; MARTELLA, V.; BASANO, F.S.; BARRS, V.R.; RADFORD, A.D.; AGRIMI, U.; HUGHES, G.L.; PALTRINIERI, S.; DECARO, N. Evidence of exposure to SARS–CoV–2 in cats and dogs from households in Italy. Nature Communicat. 11: 6231. 2020.

SALLARD, E.; HALLOY, J.; CASANE, D.; DECROLY, E.; VAN–HELDEN, J. Tracing the origins of SARS–COV–2 in coronavirus phylogenies: a review. Envirom. Chemistry Lett. 19(2): 769–785. 2021. https://doi.org/gjnzwm.

SÁNCHEZ–MONTES, S.; BALLADOS–GONZÁLEZ, G.G.; GAMBOA–PRIETO, J.; CRUZ–ROMERO, A.; ROMERO–SALAS, D.; PÉREZ–BRÍGIDO, C.D.; AUSTRIA–RUÍZ, M.J.; GUERRERO–REYES, A.; LAMMOGLIA–VILLAGÓMEZ, M.A.; CAMACHO–PERALTA, I.P.; MORALES–NARCIA, J.Á.; BRAVO–RAMOS, J.L.; BARRIENTOS–VILLEDA, M.; BLANCO–VELASCO, L.A.; BECKER, I. No molecular evidence of SARS–CoV–2 infection in companion animals from Veracruz, Mexico. Transbound. Emerg. Dis. 16: e10.1111. 2021.

SANTILLAN–HARO, A. Caracterización Epidemiológica De Covid–19 En Ecuador. InterAme. J. Med. Health. 3: 1–7. 2020. https://doi.org/h97f.

SHI, J.; WEN, Z.; ZHONG, G.; YANG, H.; WANG, C.; HUANG, B.; LIU, R.; HE, X.; SHUAI, L.; SUN, Z.; ZHAO, Y.; LIU, P.; LIANG, L.; CUI, P.; WANG, J.; ZHANG, X.; GUAN, Y.; TAN, W.; WU, G.; BU, Z. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Sci. 368(6494): 1016–1020. 2020. https://doi.org/ggrj6s.

SIT, T.H.C.; BRACKMAN, C.J.; IP, S.M.; TAM, K.W.S.; LAW, P.Y.T.; TO, E.M.W.; YU, V.Y.T.; SIMS, L.D.; TSANG, D.N.C.; CHU, D.K.W.; PERERA. R.A.; POON, L.M.; PEIRIS, M. Infection of dogs with SARS–CoV–2. Nature. 586: 776–778. 2020.

STATISTICAL ANALISYS SYSTEM INSTITUTE. SAS/STAT. User’s guide, Rel. 9.1.3. 2014.

Published
2022-09-04
How to Cite
1.
Chiliquinga-Quinchiguano RD, Campos-Murillo N, Castillo-Hidalgo E. Detection of SARS–CoV–2 antibodies in dogs in contact with COVID–19 positive humans. Rev. Cient. FCV-LUZ [Internet]. 2022Sep.4 [cited 2024Jun.3];32:1-. Available from: https://www.produccioncientificaluz.org/index.php/cientifica/article/view/38685
Section
Veterinary Medicine