Macrominerales, minerales traza y estado del hierro heme y no heme en músculo Longissimus dorsi, de cinco razas de corderos doble propósito criados en sistema de pastoreo en Uruguay

  • María Helena Guerra Universidad de la República, Facultad de Agronomía, Estación Experimental de Salto, Departamento de Producción Animal y Pasturas. Uruguay
  • Arnaldo Moreni Universidad de la República, Facultad de Agronomía, Departamento de Producción Animal y Pasturas. Laboratorio de Calidad de Alimentos y Productos, Uruguay
  • Alí Saadoun Universidad de la República, Facultad de Agronomía, Departamento de Producción Animal y Pasturas. Laboratorio de Calidad de Alimentos y Productos, Uruguay - Universidad de la República, Facultad de Ciencias, Sección Fisiología y Nutrición. Uruguay
  • María Cristina Cabrera Universidad de la República, Facultad de Agronomía, Departamento de Producción Animal y Pasturas. Laboratorio de Calidad de Alimentos y Productos, Uruguay - Universidad de la República, Facultad de Ciencias, Sección Fisiología y Nutrición. Uruguay
Palabras clave: Raza de cordero, calidad de carne, minerales, hierro heme y no heme

Resumen

La producción de carne ovina se enfrenta a nuevos desafíos, por lo que el conocimiento profundo de los atributos de la carne de cordero producido por diferentes genotipos y en condiciones de pastura, son necesario para caracterizar estos sistemas, valorizar y diferenciar el producto desde un enfoque de calidad y hacia una imagen más natural, atributos que cada vez más toman en cuenta los consumidores. Este estudio tuvo como objetivo caracterizar nutricionalmente la carne de cordero, proveniente de cinco tipos genéticos, criados en un sistema pastoril, a través del contenido de minerales esenciales; macroelementos, Ca, Mg, Na y K, minerales traza como Se, Co, Zn, Cu, Mn, hierro total (TFe), hierro heme (HFe) y hierro no heme (NHFe) y vitamina B12 en el músculo Longissimus dorsi. Se estudiaron las razas Corriedale, Merino Dohne, Highlander®, Corriedale Pro y la cruza Merino Australiano x Corriedale; n=10. La raza Merino Dohne tuvo la mayor concentración de calcio (66,6 ± 6,3 mg·kg–1), Highlander® y Merino Dohne tienen una concentración de manganeso significativamente (P<0,05) mayor (304,1 ± 26,0 y 308,7 ± 23,6 µg·kg–1, respectivamente) que las demás razas. No hubo diferencias significativas en las concentraciones de vitamina B12 entre las razas de corderos. La relación HFe y HFe/TFe fue mayor (P<0,05) en las razas Corriedale y Corriedale Pro (15,7 ± 0,6 y 15,4 ± 0,7 mg·kg–1 y 81,7 ± 2,8% y 76,0 ± 2,2%, respectivamente) y, en consecuencia, menor NHFe, en relación con los otros grupos. También se obtuvo un mayor contenido de Zn en Corriedale (32,6 ±1,3 mg·kg–1), pero las otras razas también son ricas en zinc. Estos resultados demuestran que la carne de cordero de estas razas constituye una buena fuente para personas con altos requerimientos como niños y ancianos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ponnampalam EN, Kerr MG, Butler KL, Cottrell JJ, Dunshea FR, Jacobs JL. Filling the out of season gaps for lamb and hogget production: Diet and genetic influence on carcass yield, carcass composition and retail value of meat. Meat Sci. [Internet]. 2019; 148:156–163. doi: https://doi.org/k8jz

Food and Agriculture Organization of the United Nations. The state of the world’s animal genetic resources for food and agriculture. [Internet]. Rischkowsky B, Pilling D, editors. Roma: FAO; 2010 [cited 22 April 2021]; p. 154–155. Available in: https://bit.ly/3uQrMHg.

Dirección de Estadística Agropecuarias (DIEA). Anuario Estadístico Agropecuario 2019. [Internet]. Montevideo, Uruguay: Ministerio de Ganadería, Agricultura y Pesca. 2019 [cited 12 Aug. 2020]: p. 58–61. Available in: https://bit.ly/3RED62l.

Instituto Nacional de Carnes (INAC). Informe Estadístico Año Agrícola 2018–2019. [Internet]. Montevideo, Uruguay: INAC. 2019 [cited 12 Aug. 2023]; p. 25–34. Available in: https://bit.ly/4atpj6a.

Montossi F, Font–Furnols M, del Campo M, San Julián R, Brito G, Sañudo C. Sustainable sheep production and consumer preference trends: Compatibilities, contradictions, and unresolved dilemmas. Meat Sci. [Internet]. 2013; 95(4):772–789. doi: https://doi.org/gmg8v7

Guerra MH, Cabrera MC, Abella DF, Saadoun A, Burton A. Se and I status in pregnant ewes from a pastoral system and the effect of supplementation with Se and I or only Se on wool quality of lambs. Heliyon. [Internet]. 2019; 5(9):e02486. doi: https://doi.org/k8j5

Cabrera MC, Saadoun A. An overview of the nutritional value of beef and lamb meat from South America. Meat Sci. [Internet]. 2014; 98(3):435–444. doi: https://doi.org/gjqwxh

Fernandes–Júnior G, Lôbo R, Madruga M, Lôbo A, Vieira L, Facó O. Genotype effect on carcass and meat quality of lambs finished in irrigated pastures in the semiarid Northeastern Brazil. Arq. Bras. Med. Vet. Zoot. [Internet]. 2013; 65(4):1208–1216. doi: https://doi.org/k8j6

Jacob RH, Pethick DW. Animal factors affecting the meat quality of Australian lamb meat. [Internet] Meat Sci. 2014; 96(2):1120–1123. doi: https://doi.org/f5n8n3

Cabrera MC, Castaño M, Terevinto A, del Puerto M, Saadoun A. Minerals, Heme Iron and Lipid Oxidation in Fresh and Aged Corriedale Lamb Meat from Pasture Based Production System in Uruguay. In: Troy D, McDonnell C, Hinds L, Kerry J, editors. Nurturing Locally, Growing Globally. 63rd International Congress of Meat Science and Technology; 2017 August 13–18th; Cork, Ireland. Wageningen, Netherlands: Wageningen Academic Publishers; 2017; p. 979–980.

Lantinga EA, Neuteboom J, Meijs J. Sward Methods. In: Penning P, editor. Herbage Intake Handbook. 2th ed. Dunston, UK: The British Grassland Society; 2004. p. 24–52.

Shen K, Zhang N, Yang X, Li Z, Zhang Y, Zhou T. Dry Ashing Preparation of (Quasi)solid Samples for the Determination of Inorganic Elements by Atomic/Mass Spectrometry. Appl. Spectrosc. Rev. [Internet]. 2015; 50(4):304–331. doi: https://doi.org/gn8zsd

Stephan CH, Fournier M, Brousseau P, Sauvé S. Graphite furnace atomic absorption spectrometry as a routine method for the quantification of beryllium in blood and serum. Chem. Cent. J. [Internet]. 2008; 2(1):14. doi: https://doi.org/cf2zwx

Cabrera MC, Ramos A, Saadoun A, Brito G. Selenium, copper, zinc, iron and manganese content of seven meat cuts from Hereford and Braford steers fed pasture in Uruguay. Meat Sci. [Internet]. 2010; 84(3):518–528. doi: https://doi.org/crnm26

Butcher DJ. Recent highlights in graphite furnace atomic absorption spectrometry. Appl. Spectrosc. Reviews. [Internet]. 2017; 52(9):755–773. doi: https://doi.org/f5h6r9

Jorhem L. Determination of metals in foods by atomic absorption spectrometry after dry ashing: NMKL Collaborative Study. J. AOAC. Intern. [Internet] 2000; 83(5):1204–1211. doi: https://doi.org/gnv7c5

Hornsey HC. The colour of cooked cured pork. I.—Estimation of the Nitric Oxide–Haem Pigments. J. Sci. Food Agric. [Internet]. 1956; 7(8):534–540. doi: https://doi.org/d4xxvz

Purchas RW, Simcock DC, Knight TW, Wilkinson BHP. Variation in the form of iron in beef and lamb meat and losses of iron during cooking and storage. Intern. Food Sci. Technol. [Internet]. 2003; 38(7):827. doi: https://doi.org/drx65r

Girard CL, Santschi DE, Stabler SP, Allen RH. Apparent ruminal synthesis and intestinal disappearance of vitamin B12 and its analogs in dairy cows. J. Dairy Sci. [Internet]. 2009; 92(9):4524–4529. doi: https://doi.org/d33bqc

R Core Team. R: A Language and Environment for Statistical Computing. Version 4.3.1. Vienna, Austria: Foundation for Statistical Computing. 2023; 1639 p. Available in: https://www.R–project.org/.

Masters DG, Norman HC, Thomas DT. Minerals in pastures – are we meeting the needs of livestock? Crop Past. Sci. [Internet]. 2019; 70(12):1184–1195. doi: https://doi.org/k8s5

Pittaluga–Rossi, A. Minerales en campo natural: variación estacional y por sitio geográfico del contenido de fósforo, cobre, manganeso, zinc, hierro y selenio. [master’s tesis on the Internet]. Montevideo, Uruguay: Universidad de la República; 2018 [cited 22 Aug. 2021]; 78 p. Available in: https://bit.ly/3RfIXtu.

National Research Council (NRC). Minerals. In: Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington, DC: The National Academies Press. 2007; p 112–149.

Torre MH, Viera I, Facchin G, Kremer E, Baran EJ, Porochin T, DiDonato V, Irigoyen C, Irigoyen J, Saldanha S, Bussi J, Ohanian M, Fuentes J. Incidence of hypocupraemia in cattle in northern Uruguay and its alleviation with an injected Cu–Phenylalanine complex. Livest. Prod. Sci. [Internet]. 2005; 95(1–2):49–56. doi: https://doi.org/cc26ws

McDowell LR, Arthington JD. Minerals for Grazing Ruminants in tropical Regions. 4th ed. Gainesville (FLA), USA: Institute of Food and Agricultural Sciences, University of Florida. 2005; 86 p.

Zhai B, Zhao K, Shen X. Effects of Sulphur Fertilizer on Copper Metabolism in Grazing Tibetan Sheep in Fertilized Pasture. Pol. J. Environ. Stud. [Internet]. 2021; 30(6):5351–5356. doi: https://doi.org/k8s7

Zhang H, Nie HT, Wang Q, Wang ZY, Zhang YL, Guo RH, Wang F. Trace element concentrations and distributions in the main body tissues and the net requirements for maintenance and growth of Dorper × Hu lambs. J. Anim. Sci. [Internet]. 2015; 93(5):2471–2481. doi: https://doi.org/f7hmjf

Zhang H, Nie H, Wang Z, Wang F. The net iron, manganese, copper, and zinc requirements for maintenance and growth of Dorper × Hu ewe lambs. Ital. J. Anim. Sci. [Internet]. 2018; 17(4):941–949. doi: https://doi.org/k8s9

Williams P. Nutritional composition of red meat. Nutr. Diet. [Internet]. 2007; 64(s4):s113–s119. doi: https://doi.org/d2k637

Purchas RW, Wilkinson BHP, Carruthers F, Jackson F. A comparison of the nutrient content of uncooked and cooked lean from New Zealand beef and lamb. J. Food Compos Anal. [Internet]. 2014; 35(2):75–82.doi: https://doi.org/k8tc

Kasap A, Kaić A, Širić I, Antunović Z, Mioč B. Proximate and mineral composition of M. longissimus thoracis et lumborum of suckling lambs from three Croatian indigenous breeds reared in outdoor conditions. Ital. J. Anim. Sci. [Internet]. 2018; 17(2):274–278. doi: https://doi.org/k8td

Belhaj K, Mansouri F, Ben–Moumen A, Sindic M, Fauconnier ML, Boukharta M, Proximate Composition, Amino Acid Profile, and Mineral Content of Four Sheep Meats Reared Extensively in Morocco: A Comparative Study. Sci. World J. [Internet]. 2021; 2021:6633774. doi: https://doi.org/k8th

Bellof G, Most E, Pallauf J. Concentration of Ca, P, Mg, Na and K in muscle, fat and bone tissue of lambs of the breed German Merino Landsheep in the course of the growing period. J. Anim. Physiol Anim. Nutr. (Berl). [Internet]. 2006; 90(9–10):385–393. doi: https://doi.org/bdcvsr

Pereira PM de CC, Vicente AF dos RB. Meat nutritional composition and nutritive role in the human diet. Meat Sci. [Internet]. 2013; 93(3):586–592. doi: https://doi.org/f4kwmr

Hoke IM, Buege DR, Ellefson W, Maly E. Nutrient and Related Food Composition of Exported Australian Lamb Cuts. [Internet]. J. Food. Compos. Anal. [Internet]. 1999; (2):97–109. doi: https://doi.org/bz955t

McDowell LR. Vitamin B12. In: McDowell LR, editor. Vitamins in Animal and Human Nutrition. 2nd Ed. Iowa, USA: Wiley–Blackwell. 2000; p 523–563.

González–Montaña JR, Escalera–Valente F, Alonso AJ, Lomillos JM, Robles R, Alonso ME. Relationship between vitamin B12 and cobalt metabolism in domestic ruminant: An update. Anim. [Internet] 2020; 10(10):1855. doi: https://doi.org/gmmfkv

Suttle NF. Mineral Nutrition of Livestock. 4th. ed. Wallingford, UK: CAB International, 2010; p 223–253.

Juárez M, Lam S, Bohrer BM, Dugan MER, Vahmani P, Aalhus J, Juárez A, López–Campos O, Prieto N, Segura J. Enhancing the Nutritional Value of Red Meat through Genetic and Feeding Strategies. Foods. [Internet]. 2021; 10(4):872. doi: https://doi.org/k8tk

Shen X, Song C. Responses of Chinese Merino Sheep (Junken Type) on Copper–Deprived Natural Pasture. Biol. Trace Elem. Res. [Internet]. 2021; 199:989–995. doi: https://doi.org/k8tm

López MAA, Martos FC. Iron availability: An updated review. Intern. J. Food Sci. Nutr. [Internet]. 2004; 55(8):597–606. doi: https://doi.org/dvdxvv

Lombardi–Boccia G, Lanzi S, Aguzzi A. Aspects of meat quality: Trace elements and B vitamins in raw and cooked meats. J. Food. Compos. Anal. [Internet] 2000; 18(1):39–46. doi: https://doi.org/fts92x

Mortimer SI, van der Werf JHJ, Jacob RH, Hopkins DL, Pannier L, Pearce KL. Genetic parameters for meat quality traits of Australian lamb meat. Meat Sci. [Internet]. 2014; 96(2):1016–1024. doi: https://doi.org/f5n83r

Pannier L, Pethick DW, Boyce MD, Ball AJ, Jacob RH, Gardner GE. Associations of genetic and non–genetic factors with concentrations of iron and zinc in the longissimus muscle of lamb. Meat Sci. [Internet]. 2014; 96(2):1111–1119. doi: https://doi.org/k8tp

Ramos A, Cabrera MC, Saadoun A. Bioaccessibility of Se, Cu, Zn, Mn and Fe, and heme iron content in unaged and aged meat of Hereford and Braford steers fedpasture. Meat Sci. [Internet]. 2012; (91)2:116–124. doi: https://doi.org/fzqndm

Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv. Nutr. [Internet] 2019; 10:696–710. doi: https://doi.org/ggqmgr

Saadoun A, Cabrera MC, Terevinto A, Puerto M del, Zaccari F. Nutritional Value of Bovine Meat Produced on Pasture. Ref. Module Food Sci. [Internet]. 2019; 2:189–96. doi: https://doi.org/k8tq

Zeng L, Pei L, Li C, Yan H. Iron Deficiency Anaemia. In: Khan J, editor. Current Topics in Anemia. [Internet]. London, UK: IntechOpen Limited. 2018; p 1–26. doi: https://doi.org/k8tr

World Health Organization. Global Anaemia Estimates in Women of Reproductive Age, by Pregnancy Status, and in Children Aged 6–59 Months. [Internet]. 2021 [cited 6 July 2022]. about 2 p. Available in: https://bit.ly/3uTEuoG.

Pannier L, Ponnampalam EN, Gardner GE, Hopkins DL, Ball AJ, Jacob RH. Prime Australian lamb supplies key nutrients for human health. Anim. Prod. Sci. [Internet]. 2010; 50(11–12):1115–1122. doi: https://doi.org/fxqq9v

Aberle ED, Forres JC, Gerrard DE, Mills EW. Principles of Meat Science. 5th. ed. Dubuque, Iowa, USA: Kendall Hunt Publishing. 2012; p 44–46.

Geesink G, Zerby H. Meat Production. In: Cottle DJ, editor. International Sheep and Wool Handbook. Nottingham, UK: Nottingham University Press. 2010; p 395–406.

Pannier L, Pethick DW, Geesink GH, Ball AJ, Jacob RH, Gardner GE. Intramuscular fat in the longissimus muscle is reduced in lambs from sires selected for leanness. Meat Sci. [Internet] 2014; 96(2):1068–1075. doi: https://doi.org/k8ts

Cottle DJ. World Sheep and Wool Production. In: Cottle DJ, editor. International Sheep and Wool Handbook. Nottingham, UK: Nottingham University Press. 2010; p 1–48.

Publicado
2024-01-01
Cómo citar
1.
Guerra MH, Moreni A, Saadoun A, Cabrera MC. Macrominerales, minerales traza y estado del hierro heme y no heme en músculo Longissimus dorsi, de cinco razas de corderos doble propósito criados en sistema de pastoreo en Uruguay. Rev. Cient. FCV-LUZ [Internet]. 1 de enero de 2024 [citado 29 de abril de 2024];34(1):8. Disponible en: https://www.produccioncientificaluz.org/index.php/cientifica/article/view/41441
Sección
Producción Animal