Caracterización microbiológica y análisis genético de bacterias aisladas de hemocultivos y muestras fecales en terneros con síntomas de septicemia y diarrea

  • Ali Uslu Selcuk University, Faculty of Veterinary Medicine, Department of Microbiology. Konya, Türkiye
  • Zafer Sayin Selcuk University, Faculty of Veterinary Medicine, Department of Microbiology. Konya, Türkiye
  • Asli Balevi Selcuk University, Faculty of Veterinary Medicine, Department of Microbiology. Konya, Türkiye
  • Aysegul Ilban Selcuk University, Faculty of Veterinary Medicine, Department of Microbiology. Konya, Türkiye
  • Osman Erganis Selcuk University, Faculty of Veterinary Medicine, Department of Microbiology. Konya, Türkiye
Palabras clave: Escherichia coli, septicemia, diarrea terneros, resistencia antimicrobiana

Resumen

La diarrea en los terneros puede ser causada por bacterias, virus y parásitos. Entre las bacterias, Escherichia coli se considera responsable de la aparición de diarrea entérica y septicemia en estos animales, afecciones que requieren atención inmediata. El objetivo del estudio fue denificar el patotipo causante de diarrea y septicemia entérica y factores asociados. Se analizó muestras de sangre y heces de 10 terneros de 3 – 15 d de edad que presentaron diarrea. Los análisis de las heces determinaron E. coli K99 en un 2/10, rotavirus el 4/10, rotavirus y Cryptosporidium spp. el otro 4/10. El hemocultivo registro presencia de E. coli en el 10/10 de las muestras. Todos los aislamientos de SepEC portarón pilus tipo 1 responsable de la adhesión, un 9/10 porto el gen de la colicina V responsable de la patogenicidad. Además, se encontró que todas las E. coli aisladas de terneros de 3 a 15 d de edad eran resistentes a los antibióticos. SepEC causante de septicemia mostró características antigénicas y genéticas diferentes a las de E. coli en el tracto intestinal. En conclusión, la enteritis primaria es causada por rotavirus, Cryptosporidium y ETEC. Se pensó que los factores de virulencia del grupo SepEC pueden variar debido a la plasticidad genómica y sus estructuras antigénicas deberían examinarse más de cerca y agregarse a los estudios de prueba de vacunas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Lorenz I, Fagan J, More SJ. Calf health from birth to weaning. II. Management of diarrhoea in pre – weaned calves. Ir. Vet. J. [Internet]. 2011; 64(9):1 – 6. doi: https://doi.org/d3vqkr

Hur TY, Jung YH, Choe CY, Cho YI, Kang SJ, Lee HJ, Ki KS, Baek KS, Suh GH. The dairy calf mortality: the causes of calf death during ten years at a large dairy farm in Korea. Korean J. Vet. Res. [Internet]. 2013; 53(2):103 – 8. doi: https://doi.org/gmxmmn

Constable PD. Antimicrobial use in the treatment of calf diarrhea. J. Vet. Intern. Med. [Internet]. 2004; 18(1):8 – 17. doi: https://doi.org/fwt57r

Pardon B, Alliët J, Boone R, Roelandt S, Valgaeren B, Deprez P. Prediction of respiratory disease and diarrhea in veal calves based on immunoglobulin levels and the serostatus for respiratory pathogens measured at arrival. Prev. Vet. Med. [Internet]. 2015; 120(2):169 – 76. doi: https://doi.org/f7gbcw

Fecteau G, Van Metre DC, Pare J, Smith BP, Higgins R, Holmberg CA, Jang S, Guterbock W. Bacteriological culture of blood from critically ill neonatal calves. Can. Vet. J. 1997; 38(2):95 – 100. Cited in PUBMED; PMID 9028592

Bartels CJ, Holzhauer M, Jorritsma R, Swart WA, Lam TJ. Prevalence, prediction and risk factors of enteropathogens in normal and non – normal faeces of young Dutch dairy calves. Prev. Vet. Med. [Internet]. 2010; 93(2 – 3):162 – 169. doi: https://doi.org/ch7mpc

Cho YI, Yoon KJ. An overview of calf diarrhea – infectious etiology, diagnosis, and intervention. J. Vet. Sci. [Internet]. 2014; 15(1):1 – 17. doi: https://doi.org/f5wkwh

Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat. Rev. Microbiol. [Internet]. 2004;2(2):123 – 140. doi: https://doi.org/bb2pfn

Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. [Internet]. 1998;11(1):142 – 201. doi: https://doi.org/gm8zp8

Foster D, Smith GW. Pathophysiology of diarrhea in calves. Vet. Clin. N. Am. – Food Anim. Pract. [Internet]. 2009; 25(1):13 – 36. doi: https://doi.org/cpxrvm

Francis D, Allen S, White R. Influence of bovine intestinal fluid on the expression of K99 pili by Escherichia coli. Am. J. Vet. Res. 1989; 50(6):822 – 826. Cited in PUBMED; PMID 2569853

Sarowska J, Futoma – Koloch B, Jama – Kmiecik A, Frej – Madrzak M, Ksiazczyk M, Bugla – Ploskonska G, Choroszy – Krol I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog. [Internet]. 2019; 11(10):1 – 16. doi: https://doi.org/gg5pns

Köhler CD, Dobrindt U. What defines extraintestinal pathogenic Escherichia coli? Int. J. Med. Microbiol. [Internet]. 2011; 301(8):642 – 647. doi: https://doi.org/dwpgdb

Bertin Y, Martin C, Girardeau JP, Pohl P, Contrepois M. Association of genes encoding P fimbriae, CS31A antigen and EAST 1 toxin among CNF1 – producing Escherichia coli strains from cattle with septicemia and diarrhea. FEMS Microbiol. Lett. [Internet]. 1998; 162(2):235 – 239. doi: https://doi.org/d8dgvm

Watts RE, Totsika M, Challinor VL, Mabbett AN, Ulett GC, De Voss JJ, Schembri MA. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect. Immun. [Internet]. 2012; 80(1):333 – 344. doi: https://doi.org/cqfdf2

Fecteau G, Smith BP, George LW. Septicemia and meningitis in the newborn calf. Vet. Clin. N. Am. – Food Anim. Pract. [Internet]. 2009; 25(1):195 – 208. doi: https://doi.org/c3hn3h

Minassian AM, Newnham R, Kalimeris E, Bejon P, Atkins BL, Bowler IC. Use of an automated blood culture system (BD BACTEC™) for diagnosis of prosthetic joint infections: easy and fast. BMC Infect. Dis. [Internet]. 2014; 14:1 – 7. doi: https://doi.org/gb3z5j

Moxley R. Enterobacteriaceae: Escherichia. In: McVey DS, Kennedy M, Chengappa MM, editors. Veterinary Microbiology. 3rd ed. Ames, Iowa, USA: John Wiley & Sons; 2013; p 62 – 74.

Hadimli HH, Pinarkara Y, Sakmanoğlu A, Sayin Z, Erganiş O, Uslu A, Al – Shattrawi HJ. Serotypes of Salmonella isolated from feces of cattle, buffalo, and camel and sensitivities to antibiotics in Turkey. Turkish J. Vet. Anim. Sci. [Internet]. 2017; 41(2):193 – 198. doi: https://doi.org/k5hk

Lassen J. Rapid identification of Gram‐negative rods using a three‐tube method combined with a dichotomic key. Acta Pathol. Microbiol. Scand. B. [Internet]. 1975; 83(6):525 – 533. doi: https://doi.org/ccgj2r

Scheutz F, Cheasty T, Woodward D, Smith HR. Designation of O174 and O175 to temporary O groups OX3 and OX7, and six new E. coli O groups that include Verocytotoxin‐producing E. coli (VTEC): O176, O177, O178, O179, O180 and O181. APMIS. 2004; 112(9):569 – 84. doi: https://doi.org/cgtmh2

McFarland J. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J. Am. Med. Assoc. [Internet]. 1907; 49(14):1176 – 1178. doi: https://doi.org/csdkhx

CLSI. Performance standards for antimicrobial susceptibility testing. 32nd. ed. CLSI supplement M100. Clinical and Laboratory Standard Institute; 2022; 402 p.

Lee SI, Kang SG, Kang ML, Yoo HS. Development of multiplex polymerase chain reaction assays for detecting enterotoxigenic Escherichia coli and their application to field isolates from piglets with diarrhea. J. Vet. Diagn. Investig. [Internet]. 2008; 20(4):492 – 496. doi: https://doi.org/bhw3p9

Oh KH, Kim SB, Park MS, Cho SH. Development of a one – step PCR assay with nine primer pairs for the detection of five diarrheagenic Escherichia coli types. J. Microbiol. Biotechnol. [Internet]. 2014; 24(6):862 – 868. doi: https://doi.org/k5hm

Vandekerchove D, Vandemaele F, Adriaensen C, Zaleska M, Hernalsteens JP, De Baets L, Pasmans F. Virulence – associated traits in avian Escherichia coli: comparison between isolates from colibacillosis – affected and clinically healthy layer flocks. Vet. Microbiol. [Internet]. 2005; 108(1 – 2):75 – 87. doi: https://doi.org/ft63sz

Aydin F, Umur Ş, Gökçe G, Genç O, Güler MA. [The Isolation and Identification of Bacteria and Parasites from Diarrhoeic Calves in Kars District]. Kafkas Univ. Vet. Fak. Derg. [Internet]. 2001 [cite 20 Jun 2023]; 7(1):7 – 14. Turkish. Available in: https://bit.ly/3unUPSw.

Brunauer M, Roch FF, Conrady B. Prevalence of worldwide neonatal calf diarrhoea caused by bovine rotavirus in combination with Bovine Coronavirus, Escherichia coli K99 and Cryptosporidium spp.: A Meta – Analysis. Anim. [Internet]. 2021; 11(4):1014. doi: https://doi.org/gnqsw3

Işik – Uslu N, Derinbay – Ekici O, Avci O. ELISA – based Point Prevalence of enteropathogens in diarrheic calves in Central Anatolia Region of Turkey. Rev. Cient. Fac. Cien. Vet. Univ. Zulia. [Internet]. 2023; 33(2):1 – 6. doi: https://doi.org/k5hn

Içen H, Arserim NB, Işik N, Özkan C, Kaya A. Prevalence of Four Enteropathogens with Immunochromatographic Rapid Test in the Feces of Diarrheic Calves in East and Southeast of Turkey. Pak. Vet. J. [Internet]. 2013 [cited 20 Jun 2023]; 33(4):496 – 499. Available in: https://bit.ly/3R8utvm.

Cengiz S, Adiguzel MC. Determination of virulence factors and antimicrobial resistance of E. coli isolated from calf diarrhea, part of eastern Turkey. Ankara Univ. Vet. Fak. Derg. [Internet]. 2020; 67(4):365 – 371. doi: https://doi.org/kdr6

Küliğ C, Coşkun A. [Prevalence of E. coli, Cryptosporidium, Clostridium perfringens, Rotavirus and Coronavirus in Neonatal Calves with Diarrhea in Sivas]. Turk. Vet. J. [Internet] 2019 [cited 21 Jun 2023]; 1(2):69 – 73. Turkish. Available in: https://bit.ly/3GbBBSt.

Güler L, Gündüz K, Ok Ü . Virulence factors and antimicrobial susceptibility of Escherichia coli isolated from calves in Turkey. Zoon. Publ. Health. [Internet]. 2008; 55(5):249 – 257. doi: https://doi.org/dwhbkb

Altuğ N, Yüksek N, Özkan C, Keleş İ, Başbuğan Y, Ağaoğlu ZT, Kaya A, Akgül Y. [Rapid Etiological Diagnosis of Neonatal Calf Diarrhoea with Immunochromatographic Test Kits]. YYU Vet. Fak. Derg. [Internet] 2013 [cited 15 Jun 2023]; 24(3):123 – 128. Turkish. Available in: https://bit.ly/3MQRbqx.

Garcia J, Pempek J, Hengy M, Hinds A, Diaz – Campos D, Habing G. Prevalence and predictors of bacteremia in dairy calves with diarrhea. J. Dairy Sci. [Internet]. 2022; 105(1):807 – 817. doi: https://doi.org/k5hp

Lofstedt J, Dohoo IR, Duizer G. Model to predict septicemia in diarrheic calves. J. Vet. Intern. Med. [Internet]. 1999; 13(2):81 – 88. doi: https://doi.org/fnqg4w

Uriarte ELL, Pasayo RAG, Masso M, Paez LC, Moncla MD, Donis N, Malena R, Méndez A, Morrell E, Giannitti F, Armendano JI, Faverin C, Centrón D, Parreño V, Odeón AC, Quiroga MP, Moreira AR. Molecular characterization of multidrug – resistant Escherichia coli of the phylogroups A and C in dairy calves with meningitis and septicemia. Microb. Pathog. [Internet]. 2022; 163:105378. doi: https://doi.org/k5hq

Kauffmann F. The serology of the coli group. J. Immunol. [Internet]. 1947; 57(1):71 – 100. doi: https://doi.org/k5hr

Tan C, Tang X, Zhang X, Ding Y, Zhao Z, Wu B, Cai X, Liu Z, He Q, Chen H. Serotypes and virulence genes of extraintestinal pathogenic Escherichia coli isolates from diseased pigs in China. Vet. J. [Internet]. 2012; 192(3):483 – 488. doi: https://doi.org/bwns5h

Debroy C, Roberts E, Fratamico PM. Detection of O antigens in Escherichia coli. Anim. Health Res. Rev. [Internet]. 2011; 12(2):169 – 185. doi: https://doi.org/cw8q6w

Feuerstein A, Scuda N, Klose C, Hoffmann A, Melchner A, Boll K, Rettinger A, Fell S, Straubinger RK, Riehm JM. Antimicrobial resistance, serologic and molecular characterization of E. coli isolated from calves with severe or fatal enteritis in Bavaria, Germany. Antibiot. [Internet]. 2021; 11(1):23. doi: https://doi.org/k5hs

World Health Organization. Antimicrobial resistance: global report on surveillance. [Internet]. Geneva: WHO. 2014 [cited 18 Apr 2023]. 232 p. Available in: https://bit.ly/3R0VrWV.

Lange ME, Uwiera RR, Inglis GD. Enteric Escherichia coli O157: H7 in Cattle, and the Use of Mice as a Model to Elucidate Key Aspects of the Host – Pathogen – Microbiota Interaction: A Review. Front. Vet. Sci. [Internet]. 2022; 9:937866. doi: https://doi.org/gsndw5

Sora VM, Meroni G, Martino PA, Soggiu A, Bonizzi L, Zecconi A . Extraintestinal pathogenic Escherichia coli: Virulence factors and antibiotic resistance. Pathog. [Internet]. 2021; 10(11):1355. doi: https://doi.org/k5jh

Khawaskar DP, Sinha DK, Lalrinzuala MV, Athira V, Kumar M, Chhakchhuak L, Thomas P. Pathotyping and antimicrobial susceptibility testing of Escherichia coli isolates from neonatal calves. Vet. Res. Commun. [Internet]. 2022; 46(2):353 – 362. doi: https://doi.org/k5jj

Pasqua M, Michelacci V, Di Martino ML, Tozzoli R, Grossi M, Colonna B, Morabito S, Prosseda G. The intriguing evolutionary journey of enteroinvasive E. coli (EIEC) toward pathogenicity. Front. Microbiol. [Internet]. 2017; 8:2390. doi: https://doi.org/gcrbhw

Šmajs D, Micenková L, Šmarda J, Vrba M, Ševčíková A, Vališová Z, Woznicová V. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol. [Internet]. 2010; 10(1):1 – 10. doi: https://doi.org/c3gtfm

Santos ACDM, Santos FF, Silva RM, Gomes TAT. Diversity of hybrid – and hetero – pathogenic Escherichia coli and their potential implication in more severe diseases. Front. Cell. Infect. Microbiol. [Internet]. 2020; 10:339. doi: https://doi.org/k5jk

Pokharel P, Dhakal S, Dozois CM. The diversity of Escherichia coli pathotypes and vaccination strategies against this versatile bacterial pathogen. Microorgan. [Internet]. 2023; 11(2):344. doi: https://doi.org/k5jm

Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P, Kuskowski MA, Smith KE. Isolation and molecular characterization of nalidixic acid – resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob. Agents Chemother. [Internet]. 2003; 47(7):2161 – 2168. doi: https://doi.org/fjxvjv

Publicado
2024-01-01
Cómo citar
1.
Uslu A, Sayin Z, Balevi A, Ilban A, Erganis O. Caracterización microbiológica y análisis genético de bacterias aisladas de hemocultivos y muestras fecales en terneros con síntomas de septicemia y diarrea. Rev. Cient. FCV-LUZ [Internet]. 1 de enero de 2024 [citado 28 de abril de 2024];34(1):11. Disponible en: https://www.produccioncientificaluz.org/index.php/cientifica/article/view/41426
Sección
Medicina Veterinaria