H2S removal capacity of supported nickel and copper oxides on mesoporous silica (H2S removal over supported metallic oxides)
Capacidad de remoción de H2S de óxidos de níquel y cobre soportados sobre sílice mesoporosa (Remoción de H2S sobre óxidos metálicos soportados)
Abstract
A mesoporous silica (MSU-1) was synthesized and then impregnated with different Cu or Ni contents by the incipient wetness impregnation method. The performance of the materials prepared for H2S removal at room temperature was evaluated. The materials were characterized by X-ray fluorescence (XRF), temperature programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen physical adsorption. The surface area and pore volume values decreased with increasing copper loading, while nickel oxide deposition did not significantly affect the textural properties. X-ray diffractograms showed the typical signals of CuO and NiO formation, poorly dispersed by the intensity of the signals, and with sizes between 1 and 2 μm as observed by SEM. The reduction profiles of the synthesized samples showed a similar behavior, with a reduction observed in several stages. Copper samples showed peaks at around 230, 265 and 350°C, while nickel solids showed reduction temperatures at 330, 360 and 515°C. The rupture curves of H2S showed that the removal capacity increased with the metal content. Copper-impregnated solids showed a H2S removal capacity between 7.3 and 22.5 mg/g, higher than that observed in nickel-synthesized solids, which was between 3.4 and 7.4 mg/g.
Downloads
References
JENSEN A., WEBB C. Enzyme Microb Technol 17(1):1-10. 1995.
GUPTA A., IBRAHIM S., SHOABI A. Progress Energ Comb Sci 54(1):65-92. 2016.
WANG J, YANG C., ZHAO Y., FAN H., WANG Z., SHANGGUAN J., MI J. Ind Eng Chem Res 57(44):12621-12629. 2017.
ZHAO Y., ZHANG Z., YANG C., FAN H., WANG J., TIAN Z. ZHANG H. Ind Eng Chem Res 57(45): 15366-15374. 2018.
MONTES D., TOCUYO E., GONZÁLEZ E., RODRÍGUEZ D., SOLANO R., ATENCIO R., RAMOS M., MORONTA A. Microporous Mesoporous Mater 168 (1): 111-120. 2013.
HUANG G., HE E., WANG Z., FAN H., SHANGGUAN J., CROISET E, CHEN Z. Ind Eng Chem Res 54 (34): 8469-8478. 2015.
PORTELA R., RUBIO-MARCOS F., LERET P., FERNÁNDEZ J., BAÑARES M., ÁVILA P. J Mater Chem A 3 (1):1306-1316. 2015.
REZAEI S, TAVANA A., SAWADA J., WU L., JUNAID A., KUZNICKI S. Ind Eng Chem Res 51 (38): 12430-12434. 2012.
OZEKMEKCI M., SALKIC S., FELLAH M. Fuel Processing Technol 139 (1):49-60. 2015.
HUANG K., ZHANG X., ZHOU L-. TAO D., FAN J. Chem Eng Sci 173 (14): 253-263. 2017.
TRONG D., DESPLANTIER-GISCARD D., DANUMAH C., KALIAGUINE S. Appl Catal A 222 (2): 299-357. 2001.
BAGSHAW S., PROUZET E., PINNAVAIAT. Science 269 (5228): 1242--1244. 1995.
RYNKOWSKI J., PARYJCZAK T., LENIK M. Appl Catal A 106(1) 73-82. 1993.
KIM J. RODRIGUEZ J., HANSON J., FRENKEL A., LEE P. J Am Chem Soc 125 (35): 10684-10692. 2003
MILE B., STIRLING D., ZAMMITT M., LOVELL A., WEBB M. J Catal 114 (2): 217-229. 1988.
NGUYEN-THANH D., BANDOSZ T. J Phys Chem B 107(1): 5812-5817. 2003.
CARRUYO G., GONZÁLEZ E., RAMOS M., ATENCIO R., BANDOSZ T., SEREDYCH M., MORONTA A. Rev Téc Ing Univ Zulia 35 (2): 1-9. 2012.