Nuclear and cytoplasmic expressions of the receptor for advanced glycation end products (RAGE) in the rat central nervous system.

Expresión nuclear y citoplasmática del receptor para compuestos de glicosilación avanzada en el sistema nervioso central de la rata.

Keywords: RAGE, ligands, nucleus, cerebral cortex, cerebellum

Abstract

The receptor for advanced glycation end products (RAGE) is a transmembrane protein involved in the induction of inflammatory processes and oxidative stress after interacting with its ligands on the cell surface. Localization on the cell surface is necessary for interaction with the ligands. This study aimed to determine the expression of RAGE in different parts of the normal rat brain and cerebellum using the immunofluorescence technique. Several cerebral cortex layers (molecular/granular layers: M/GL; pyramidal layer: PL) and the hypothalamus were analyzed, as well as the molecular layer (CML) and the granular layer (CGL) of the cerebellum. Cells with RAGE-positive nuclei were generally observed in the brain’s cerebral cortex and cerebellum. In the M/GL, cells with different degrees of positivity in the nucleus and cytoplasm accompanied by RAGE-positive material in the adjacent extracellular space were observed, and RAGE- positive material in the neuropile. Pyramidal neurons presenting various degrees of nuclear RAGE-positive material budding and cells with different degrees of nuclear and cytoplasmic positivity were observed in PL. The hypothalamus showed a high number of cells with RAGE-positive granules adjacent to the nucleus and in the cytoplasm; nuclei remained negative. Many positive nuclei were observed in CML; they were scarce in CGL. These data suggest the storage of RAGE at the nuclear and cytoplasmic levels in healthy rats and hypothesize the possible translocation of this molecule to the cell surface in pathological conditions.

Downloads

Download data is not yet available.

Author Biographies

Jesús Mosquera-Sulbarán, Universidad del Zulia, Maracaibo, Venezuela.

Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.

Adriana Pedreáñez, Universidad del Zulia, Maracaibo, Venezuela.

Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.

Yenddy Carrero, Universidad del Zulia, Maracaibo, Venezuela.

Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.

Catherina Peña, Universidad del Zulia, Maracaibo, Venezuela.

Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.

References

Mosquera JA. Role of the receptor for advanced glycation end products (RAGE) in inflammation. Review. Invest Clin 2010; 51(2): 257-268.

Muñoz N, Pedreañez A, Mosquera J. Angiotensin II induces increased myocardial expression of Receptor for Advanced Glycation End products, monocyte/ macrophage infiltration and circulating endothelin-1 in rats with experimental diabetes. Can J Diabetes 2020; 44(7): 651-656. https://doi: 10.1016/j.jcjd.2020.03.010.

Tóbon-Velasco JC, Cuevas E, Torres-Ramos MA. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS. Neurol Disord Drug Targets 2014; 13(9): 1615-1626. https://doi: 10.2174/1871527313666140806144831.

Serratos IN, Castellanos P, Pastor N, Millán-Pacheco C, Rembao D, Pérez-Montfort R, Cabrera N, Reyes-Espinosa F, Díaz-Garrido P, López-Macay A, Martínez-Flores K, López-Reyes A, Sánchez- García A, Cuevas E, Santamaria A. Modeling the interaction between quinolinate and the Receptor for Advanced Glycation End Products (RAGE): relevance for early neuropathological processes. PLoS ONE 2015; 10(3): e0120221. https://doi.org/10.1371/journal.pone.012022.

Hudson BI, Kalea AZ, Arriero MM, Harja E, Boulanger E, D’Agati V, Schmid AM. Interaction of the RAGE cytoplasmic domain with Diaphanous-1 is required for ligandstimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 2008;283(49): 34457-34468. https://doi. org/10.1074/jbc.M801465200.

Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78:101636. https://doi: 10.1016/j.arr.2022.101636.

Brahadeeswaran S, Sivagurunathan N, Calivarathan L. Inflammasome signaling in the aging brain and age-related neurode-generative diseases. Mol Neurobiol 2022; 59(4):2288-2304. https://doi: 10.1007/s12035-021-02683-5.

Chellappa RC, Palanisamy R, Swaminathan K. RAGE isoforms, its ligands and their role in pathophysiology of Alzheimer’s Disease. Curr Alzheimer Res 2020; 17(14):1262-1279. https://doi:10.2174/1567205018666210218164246.

Fan H, Tang HB, Chen Z, Wang HQ, Zhang L, Jiang Y, Li T, Yang CF, Wang XY, Li X, Wu SX, Zhang GL. Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury. J Neuroinflammation 2020; 17(1): 295. https://doi.org/10.1186/s12974-020-01973-4.

Ge Y, Huang M, Yao YM. The Effect and regulatory mechanism of high mobility Group Box-1 Protein on immune cells in inflammatory diseases. Cells 2021; 10(5):1044. https://doi.org/10.3390/10.3390/cells10051044.

Chen R, Kan R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med 2022; 54(2): 91–102. https://doi.org/10.1038/s12276-022-00736-w.

Wang H. Regulation of HMGB1 Release in Health and Diseases. Cells 2022; 12(1):46. https://doi.org/10.3390/cells12010046.

Wang S, Yi Z. HMGB1 in inflammation and cancer. J Hematol Oncol 2020; 13(1): 116. https://doi:10.1186/s13045-020-00950-x.

Bustin M. Regulation of DNA-dependent activities by the functional motifs of the high- mobility-group chromosomal proteins. Mol Cell Biol 1999; 19(8): 5237–5246. https://doi.org/10.1128/MCB.19.8.5237.

Sirois CM, Jin T, Miller A, Bertheloot D, Nakamura H, Horvath GL, Mian A, Jiang, J, Schrum J, Bossaller L, Pelka K, Garbi N, Brewah Y, Tian J, Chang, C, Chowdhury PS. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med 2013; 210(11): 2447–2463. https://doi.org/10.1084/jem.20120201.

Tsai KYF, Tullis B, Breithaupt KL, Fowers R, Jones N, Grajeda S, Arroyo JA. A role for RAGE in DNA double strand breaks (DSBs) detected in pathological placentas and trophoblast cells. Cells 2021; 10(4):
857. https://doi.org/10.3390/cells10040857.

Lee BW, Chae HY, Kwon SJ, Park SY, Ihm J, Ihm SH. RAGE ligands induce apoptotic cell death of pancreatic β-cells via oxidative stress. Int J Mol Med 2010; 26(6): 813-818. https://doi.org/10.3892/ijmm_00000529.

Byun K, Yoo YC, Son M, Lee J, Jeon GB, Park YM, Salekdeh G, Lee B. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacol Ther 2017; 177:44-55. https://doi:10.1016/j.pharmthera.2017.02.030.

Sathe K, Maetzler W, Lang JD, Mounsey RB, Fleckenstein C, Martin HL, Schulte C, Mustafa S, Synofzik M, Vukovic Z, Itohar, S, Berg D, Teismann P. S100B is increased in Parkinson’s disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. Brain 2012; 135(Pt 11): 3336-3347. https://doi.org/10.1093/brain/aws250.
Published
2023-11-20
How to Cite
Mosquera-Sulbarán, J., Pedreáñez, A., Carrero, Y., & Peña, C. (2023). Nuclear and cytoplasmic expressions of the receptor for advanced glycation end products (RAGE) in the rat central nervous system.: Expresión nuclear y citoplasmática del receptor para compuestos de glicosilación avanzada en el sistema nervioso central de la rata. Investigación Clínica, 64(4), 505-512. https://doi.org/10.54817/IC.v64n4a7