Investigación de los posibles efectos protectores de la Betanina sobre la toxicidad experimental inducida por Glutamato Monosódico en ratas ancianas

  • Gurkan Baytar Aydin Adnan Menderes University, Institute of Health Sciences, Aging Health and Care Interdisciplinary. Aydin, Türkiye
  • Tuncer Kutlu Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Veterinary Pathology. Hatay, Türkiye
  • Serdal Ogut Aydın Adnan Menderes University, Faculty of Health Sciences, Nutrition and Dietetics. Aydın, Türkiye
Palabras clave: Glutamato monosódico, ratas envejecidas, bioquímica, betanina, histopatología

Resumen

Este estudio se llevó a cabo para investigar los efectos protectores de betanina ingrediente activo en la planta de remolacha roja (Beta vulgaris) en ratas de edad avanzada expuestos a la toxicidad crónica de glutamato monosódico (MSG). Un total de 48 ratas ancianas fueron divididas aleatoriamente en 4 grupos diferentes. Al final del estudio de 28 días, las ratas fueron sacrificadas bajo anestesia profunda. Se investigaron los niveles de capacidad antioxidante total (TAC), capacidad oxidante total (TOC), paraoxonasa (PON), tiol, malondialdehído (MDA) y óxido nítrico (NO) en el suero sanguíneo de las ratas mediante el método espectrofotométrico. El índice de estrés oxidativo (OSI) se calculó dividiendo el TOC por el TAC. La bilirrubina total se midió con el método colorimétrico utilizando un kit ELISA. Los tejidos hepáticos se tiñeron con hematoxilina–eosina (HE) para el examen histopatológico. La diferencia en los niveles séricos de TAC, TOC, OSI, PON, MDA y tiol fue estadísticamente significativa entre los grupos (P<0,05). La diferencia en los niveles séricos de NO y bilirrubina total no fue estadísticamente significativa entre los grupos (P>0,05). El análisis de los hallazgos histopatológicos reveló una degeneración hidrópica leve poco común en el grupo MSG y un aspecto histológico casi normal en el grupo MSG+betanina. Este estudio demostró que la betanina podía aumentar el efecto antioxidante y reducir el daño histopatológico causado por el MSG.

Descargas

La descarga de datos todavía no está disponible.

Citas

Erel O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005; [Internet]. 38(12):1103–1111. doi: https://doi.org/dzjwc5

Shrivastava A, Mishra SP, Pradhan S, Choudhary S, Singla S, Zahra K, Aggarwal LM. An assessment of serum oxidative stress and antioxidant parameters in patients undergoing treatment for cervical cancer. Free Radic. Biol. Med. [Internet]. 2021; 167:29–35. doi: https://doi.org/mmwt

Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by–product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. [Internet]. 2007; 8:722–728. doi: https://doi.org/c7cctz

Niijima A, Togiyama T, Adachi A. Cephalic–phase insulin release induced by taste stimulus of monosodium glutamate (umami taste). Physiol. Behav. [Internet]. 1990; 48(6):905–908. doi: https://doi.org/db2g4v

Hermawati E, Sari DCR, Partadiredja G. The effects of black garlic ethanol extract on the spatial memory and estimated total number of pyramidal cells of the hippocampus of monosodium glutamate–exposed adolescent male Wistar rats. Anat. Sci. Intern. [Internet]. 2015; 90:275–286. doi: https://doi.org/f7pwn6

Anbarkeh FR, Baradaran R, Ghandy N, Jalali M, Nikravesh MR, Soukhtanloo M. Effects of monosodium glutamate on apoptosis of germ cells in testicular tissue of adult rat: An experimental study. Intern. J. Reprod. Biomed. [Internet]. 2019; 17(4):261–70. https://doi.org/10.18502/4

Nnadozie JO, Chijioke UO, Okafor OC, Olusina DB, Oli AN, Nwonu PC, Mbagwu HO, Chijioke CP. Chronic toxicity of low dose monosodium glutamate in albino Wistar rats. BMC Res. Notes. [Internet]. 2019; 12(1):593. doi: https://doi.org/gmdw4t

Sharma A. Monosodium glutamate–induced oxidative kidney damage and possible mechanisms: A mini–review. J. Biomed. Sci. [Internet]. 2015; 22(1):1–6. doi: https://doi.org/gk47qv

El–Meghawry EL–Kenawy A, Osman HEH, Daghestani MH. The effect of vitamin C administration on monosodium glutamate induced liver injury. An experimental study. Exp. Toxicol. Pathol. [Internet]. 2013; 65(5):513–521. doi: https://doi.org/mmwv

Hazzaa SM, Abdelaziz SAM, Eldaim MAA, Abdel–Daim MM, Elgarawany GE. Neuroprotective potential of allium sativum against monosodium glutamate–induced excitotoxicity: Impact on short–term memory, gliosis, and oxidative stress. Nutrients. [Internet]. 2020; 12(4):1–17. doi: https://doi.org/mmww

El Gamal AA, Alsaid MS, Raish M, Al–Sohaibani M, Al–Massarani SM, Ahmad A, Hefnawy M, Al–Yahya M, Basoudan OA,Rafatullah S. Beetroot (Beta vulgaris L.) extract ameliorates gentamicin–induced nephrotoxicity associated oxidative stress, inflammation, and apoptosis in rodent model. Mediators Inflamm. [Internet]. 2014; 2014(983952):1–12. doi: https://doi.org/f6pc2x

Krajka–Kuźniak V, Szaefer H, Ignatowicz E, Adamska T, Baer–Dubowska W. Beetroot juice protects against N–nitrosodiethylamine–induced liver injury in rats. Food Chem. Toxicol. [Internet]. 2012; 50(6):2027–2033. doi: https://doi.org/f3zrgx

Raish M, Ahmad A, Ansari MA, Alkharfy KM, Ahad A, Khan A, Ali N, Ganaie Ma, Hamidaddin MAA. Beetroot juice alleviates isoproterenol–induced myocardial damage by reducing oxidative stress, inflammation, and apoptosis in rats. Biotech. [Internet]. 2019; 9(4):1–11. doi: https://doi.org/mmwx

Ramirez–Velasquez IM, Velez E, Bedoya–Calle A, Caro–Lopera FJ. Mechanism of Antioxidant Activity of Betanin, Betanidin and Respective C15–Epimers via Shape Theory, Molecular Dynamics, Density Functional Theory and Infrared Spectroscopy. Molecules. [Internet]. 2022; 27(6):2003. doi: https://doi.org/mmwz

Strech D, Dirnagl U. 3Rs missing: Animal research without scientific value is unethical. BMJ Open Sci. [Internet]. 2019; 3(1):1–4. doi: https://doi.org/mmw2

Kayode AA, Kayode OT, Oridota OJ. Alterations in the biochemical indices in Wistar rats exposed to an overdose of codeine and dextromethorphan. J Taibah Univ. Med. Sci. [Internet]. 2021; 16(2):198–208. doi: https://doi.org/gmdvs9

Mauriz E. Clinical applications of visual plasmonic colorimetric sensing. Sensors (Switzerland). [Internet]. 2020; 20(21):1–31. doi: https://doi.org/mmw3

Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. [Internet]. 2004; 37(4):277–85. doi: https://doi.org/frb5dh

Placer Z, Veselková A, Rath R. Kinetik des Malondialdehydes im Organismus. Experientia. [Internet]. 1965; 21(1):19–20. doi: https://doi.org/chzjqv

Navarro–Gonzálvez JA, García–Benayas C, Arenas J. Semiautomated measurement of nitrate in biological fluids. Clin. Chem. [Internet]. 1998; 44(3):679–681. doi: https://doi.org/mmw4

Eckerson HW, Wyte CM, La Du BN. The human serum paraoxonase/arylesterase polymorphism. Ame. J. Hum. Genet. 1983; 35(6):1126–1138. Cited in: PubMed; PMID 6316781.

Guvenc M, Cellat M, Gokcek İ, Ozkan H, Arkali G, Yakan A, Özsoy SY, Aksakal M. Nobiletin attenuates acetaminophen–induced hepatorenal toxicity in rats. J. Biochem. Mol. Toxicol. [Internet]. 2020; 34:e22427. doi: https://doi.org/mmw5

Ozkan Hu, Kutlu T, Yakın A, Ozsoy SY. Molecular, biochemical and histopathological effects of long term low and high percentage fructose consumption on liver in rats. Ankara Üniv. Vet. Fak. Derg. [Internet]. 2021; 69(4):1–24. doi: https://doi.org/mmw6

López–Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging Europe PMC Funders Group. Cell. [Internet]. 2013; 153(6):1194–1217. doi: https://doi.org/f42f5g

Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin. Biochem. [Internet]. 2014; 47(18):326–332. doi: https://doi.org/f6r6dk

Erenler AK, Kocabaş R, Doʇan T, Erdemli HK, Yetim M. Paraoxanase as an indicator of myocardial ischemia and its utility in determining extension of ischemia. Ame. J. Emerg. Med. [Internet]. 2016; 34(1):45–48. doi: https://doi.org/f73bhb

Förstermann U, Boissel J, Kleinert H. Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J. [Internet]. 1998; 12(10):773–790. doi: https://doi.org/mmw7

Nazifi S, Razavi SM, Kianiamin P, Rakhshandehroo E. Evaluation of erythrocyte antioxidant mechanisms: Antioxidant enzymes, lipid peroxidation, and serum trace elements associated with progressive anemia in ovine malignant theileriosis. Parasitol. Res. [Internet]. 2011; 109(2):275–281. doi: https://doi.org/b899nh

Paul MVS, Abhilash M, Varghese M V., Alex M, Nair HR. Protective effects of α–tocopherol against oxidative stress related to nephrotoxicity by monosodium glutamate in rats. Toxicol. Mech. Methods. [Internet]. 2012; 22(8):625–630. doi: https://doi.org/mmw8

Onaolapo AY, Ayeni OJ, Ogundeji MO, Ajao A, Owolabi AR, Onaolapo OJ. Subchronic ketamine alters behaviour, metabolic indices and brain morphology in adolescent rats: Involvement of oxidative stress, glutamate toxicity and caspase–3–mediated apoptosis. J. Chem. Neuroanat. [Internet]. 2019; 96:22–33. doi: https://doi.org/mmw9

Onaolapo A. A Histological Study of the Hepatic and Renal Effects of Subchronic Low Dose Oral Monosodium Glutamate in Swiss Albino Mice. Br. J. Med .Med. Res. [Internet]. 2013; 3(2):294–306. doi: https://doi.org/mmxb

Da Silva DVT, Pereira AD, Boaventura GT, Ribeiro RSDA, Verícimo MA, De Carvalho–Pinto CE, Baião DDS, Aguila EMD, Paschoalin VMF. Short–term betanin intake reduces oxidative stress in wistar rats. Nutrients. [Internet]. 2019; 11(9):1–16. doi: https://doi.org/mmxc

Han J, Zhang Z, Yang S, Wang J, Yang X, Tan D. Betanin attenuates paraquat–induced liver toxicity through a mitochondrial pathway. Food Chem. Toxicol. [Internet]. 2014; 70:100–106. doi: https://doi.org/f6b64r

Smith GS, Walter GL, Walker RM. Clinical Pathology in Non–Clinical Toxicology Testing. In: Haschek WM, Colin G. Rousseaux, Wallig MA, editors. Haschek and Rousseaux’s Handbook of Toxicologic Pathology. 3rd ed. Cambridge (MA): Academic Press; 2013. p. 565–594.

Tawfik MS, Al–Badr N. Adverse Effects of Monosodium Glutamate on Liver and Kidney Functions in Adult Rats and Potential Protective Effect of Vitamins C and E. Food Nutr. Sci. [Internet]. 2012; 3(5):651–659. doi: https://doi.org/mmxj

Helal AM, Abdel–Latif MS, Abomughaid MM, Ghareeb DA, El–Sayed MM. Potential therapeutic effects of Ulva lactuca water fraction on monosodium glutamate–induced testicular and prostatic tissue damage in rats. Environ. Sci. Pollut. Res. [Internet]. 2021; 28(23):29629–29642. doi: https://doi.org/mmxk

Elbassuoni EA, Ragy MM, Ahmed SM. Evidence of the protective effect of L–arginine and vitamin D against monosodium glutamate–induced liver and kidney dysfunction in rats. Biomed. Pharmacother. [Internet]. 2018; 108:799–808. doi: https://doi.org/mmxm

Hagar H, Al Malki W, Al W. Betaine supplementation protects against renal injury induced by cadmium intoxication in rats: Role of oxidative stress and caspase–3. Environ. Toxicol. Pharmacol. [Internet]. 2014; 37(2):803–811. doi: https://doi.org/f523rk

Esatbeyoglu T, Wagner AE, Motafakkerazad R, Nakajima Y, Matsugo S, Rimbach G. Free radical scavenging and antioxidant activity of betanin: Electron spin resonance spectroscopy studies and studies in cultured cells. Food Chem. Toxicol. [Internet]. 2014; 73:119–126. doi: https://doi.org/f6q4pk

Publicado
2024-03-18
Cómo citar
1.
Baytar G, Kutlu T, Ogut S. Investigación de los posibles efectos protectores de la Betanina sobre la toxicidad experimental inducida por Glutamato Monosódico en ratas ancianas. Rev. Cient. FCV-LUZ [Internet]. 18 de marzo de 2024 [citado 29 de abril de 2024];34(1):7. Disponible en: https://www.produccioncientificaluz.org/index.php/cientifica/article/view/41757
Sección
Medicina Veterinaria