Evaluación del daño en el ADN inducido por quimioterapia metronómica en leucocitos de sangre periférica de pacientes caninos con cáncer de mama mediante el ensayo cometa alcalino

  • Lorena Elizabeth Chalco–Torres Universidad Técnica de Machala, Ecuador
  • José Atilio Aranguren–Méndez Universidad del Zulia, Facultad de Ciencias Veterinarias, Laboratorio de Genética Molecular, Venezuela
  • Ana Elizabeth Guerrero–López Universidad Técnica de Machala, Ecuador
  • Mauro Nirchio–Tursellino Universidad Técnica de Machala, Ecuador
Palabras clave: Cáncer de mama, quimioterapia metronómica (mCHT), ciclofosfamida, genotoxicidad, mastectomía

Resumen

El cáncer de mama es una enfermedad que demanda tratamientos efectivos. La quimioterapia convencional, aunque eficaz, con frecuencia ocasiona efectos secundarios perjudiciales. En contraste, la quimioterapia metronómica (mCHT), que implica la administración continua de dosis bajas de fármacos anticancerígenos, se presenta como una alternativa menos agresiva. En este estudio, se evaluó el impacto genotóxico del tratamiento con ciclofosfamida y meloxicam bajo el enfoque de mCHT en diez pacientes caninas (Canis lupus familiaris) con carcinoma mamario después de someterse a mastectomía. Las pacientes se sometieron a evaluaciones mensuales, que incluyeron radiografías de tórax, análisis de sangre y el ensayo cometa alcalino para medir efectos genotóxicos del antineoplásico. Estos resultados se compararon con los de un grupo que recibió quimioterapia convencional. Los resultados revelaron que las pacientes sometidas a mCHT experimentaron niveles significativamente menores de daño al ADN en comparación con las que recibieron quimioterapia convencional. Además, se observó una disminución del daño al ADN con el tiempo durante la mCHT, lo que sugiere que las perras podrían haber desarrollado tolerancia al tratamiento. Los parámetros sanguíneos se mantuvieron estables en el grupo tratado con mCHT, y las radiografías no mostraron signos de recurrencia o metástasis. Todas las perras sobrevivieron durante el año de seguimiento sin recurrencia del cáncer de mama. Se concluye que la mCHT con ciclofosfamida parece ser una opción terapéutica poco agresiva con un perfil genotóxico más favorable en el tratamiento del cáncer de mama en perras.

Descargas

La descarga de datos todavía no está disponible.

Citas

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Cancer American (AC) Cancer J. Clin. [Internet]. 2021; 71(3):209–249. doi: https://doi.org/ftxg

Centers for Disease Control (CDC) Breast Cancer. What is breast cancer? Centers for Disease Control and Prevention. [Internet]. 2022 [cited 24 Aug 2023]; p 1-2. Available in: https://goo.su/Lfgfm.

Weigelt, B., Peterse, JL, Van’t Veer, LJ. Breast cancer metastasis: markers and models. Nature Reviews. Cancer. [Internet]. 2005; 5(8). 591–602. doi: https://doi.org/cn845x

Abbas Z, Rehman S. An Overview of Cancer Treatment Modalities. In: Shahzad HN, editor. Neoplasm. [Internet]. London: IntechOpen; 2018. 21 p. doi: https://doi.org/mdkk

Hassan MSU, Ansari J, Spooner D, Hussain SA. Chemotherapy for breast cancer (Review). Oncol. Rep. [Internet]. 2010; 24(5):1121–1131. doi: https://doi.org/fxf66r

Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. Nature Reviews. Drug Discovery. [Internet]. 2010; 9(6):447–464. doi: https://doi.org/dfwwsm

Solimini NL, Luo J, Elledge SJ. Non-oncogene addiction and the stress phenotype of cancer cells. Cell. [Internet]. 2007; 130(6):986–988. doi: https://doi.org/c9dx3v

Maiti R. Metronomic chemotherapy. J. Pharmacol. Pharmacotherapeut. [Internet]. 2014; 5(3):186–192. doi: https://doi.org/ghpcq9

Cazzaniga ME, Pinotti G, Montagna E, Amoroso D, Berardi R, Butera A, Cagossi K, Cavanna L, Ciccarese M, Cinieri S, Cretella E, De Conciliis E, Febbraro A, Ferraù F, Ferzi A, Fiorentini G, Fontana A, Gambaro AR, Garrone O, Gebbia V, Generali D, Gianni L, Giovanardi F, Grassadonia A, Leonardi V, Marchetti P, Melegari E, Musolino A, Nicolini M, Putzu C, Riccardi F, Santini D, Saracchini S, Sarobba MG, Schintu MG, Scognamiglio G, Spadaro P, Taverniti C, Toniolo D, Tralongo P, Turletti A, Valenza R, Valerio MR, Vici P, Clivio L, Torri V. Metronomic chemotherapy for advanced breast cancer patients in the real world practice: Final results of the VICTOR-6 study. Breast. 2019; 48:7-16. doi: https://doi.org/mdkm

Bignami M, Casorelli I, Karran P. Mismatch repair and response to DNA-damaging antitumour therapies. Eur. J. Cancer. [Internet]. 2003; 39(15):2142–2149. doi: https://doi.org/frp59m

van den Boogaard WMC, Komninos DSJ, Vermeij WP. Chemotherapy Side-Effects: Not All DNA Damage Is Equal. Cancers. [Internet]. 2022; 14(3):627. doi: https://doi.org/gpszqd

Van Maanen JM, Retèl J, de Vries J, Pinedo HM. Mechanism of action of antitumor drug etoposide: a review. J. Natl. Cancer Inst. [Internet]. 1988; 80(19):1526–1533. doi: https://doi.org/czh43k

Robbins WA. Cytogenetic damage measured in human sperm following cancer chemotherapy. Mutat. Res. [Internet]. 1996; 355(1-2):235–252. doi: https://doi.org/bdjd8s

Li L-Y, Guan YD, Chen XS, Yang JM, Cheng Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front. Pharmacol. [Internet]. 2020; 11:629266. doi: https://doi.org/mdsd

Lu Y, Liu Y, Yang C. Evaluating In Vitro DNA Damage Using Comet Assay. J Vis Exp. [Internet]. 2017; (128):e56450. doi: https://doi.org/gs5z2v

McKelvey-Martin VJ, Green MH, Schmezer P, Pool-Zobel BL, De Méo MP, Collins A. The single cell gel electrophoresis assay (comet assay): A European review. Mutat. Res. [Internet]. 1993; 288(1):47–63. doi: https://doi.org/cwdg6z

Nandhakumar S, Parasuraman S, Shanmugam MM, Ramachandra, RK, Parkash C, Vishnu BB. Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). J. Pharmacol. Pharmacother. [Internet]. 2011; 2(2):107–111. doi: https://doi.org/dmfjnf

McKenna DJ, McKeown SR, McKelvey-Martin VJ. Potential use of the comet assay in the clinical management of cancer. Mutagen. [Internet]. 2008; 23(3):183–190. doi: https://doi.org/dxn6ct

Kopjar N, Garaj-Vrhovac V, Milas I. Assessment of chemotherapy-induced DNA damage in peripheral blood leukocytes of cancer patients using the alkaline comet assay. Teratog. Carcinog. Mutagen. [Internet]. 2002; 22(1):13–30. doi: https://doi.org/ffh7xz

Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol. [Internet]. 2004; 26: 249–261. doi: https://doi.org/b4xr3f

Reza-Khorramizadeh M, Saadat F. Animal models for human disease. In: Verma AS, Singh A, editors. Animal Biotechnology. 2nd. ed. [Internet]. Boston: Academic Press; 2020. p 153–171. doi: https://doi.org/mdkn

Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab. Anim. Res. [Internet]. 2022; 38:18. doi: https://doi.org/mdkp

Robinson NB, Krieger K, Khan FM, Huffman W, Chang M, Naik A, Yongle R, Hameed I, Krieger K, Girardi LN, Gaudino M. The current state of animal models in research: A review. Int J Surg. [Internet]. 2019; 72:9-13. doi: https://doi.org/ghw9fn

Morgan SJ, Elangbam CS, Berens S, Janovitz E, Vitsky A, Zabka T, Conour L. Use of animal models of human disease for nonclinical safety assessment of novel pharmaceuticals. Toxicol. Pathol. [Internet]. 2013; 41(3):508–518. doi: https://doi.org/mdsf

Inglebert M, Dettwiler M, Hahn K, Letko A, Drogemuller C, Doench J, Brown A, Memari Y, Davies HR, Degasperi A, Nik-Zainal S, Rottenberg S. A living biobank of canine mammary tumor organoids as a comparative model for human breast cancer. Sci. Rep. [Internet]. 2022; 12:18051. doi: https://doi.org/gq486f

Abdelmegeed SM, Mohammed S. Canine mammary tumors as a model for human disease. Oncol. Lett. [Internet]. 2018; 15(6):8195–8205. doi: https://doi.org/mdsg

Gray M, Meehan J, Martínez-Pérez C, Kay C, Turnbull AK, Morrison LR, Pang LY, Argyle D. Naturally-Occurring Canine Mammary Tumors as a Translational Model for Human Breast Cancer. Front Oncol. [Internet]. 2020; 10:617. doi: https://doi.org/mdsh

Lutful-Kabir FM, Alvarez CE, Bird RC. Canine Mammary Carcinomas: A Comparative Analysis of Altered Gene Expression. Vet. Sci. China. [Internet]. 2015; 3(1):1. doi: https://doi.org/mdsj

Nguyen F, Peña L, Ibisch C, Loussouarn D, Gama A, Rieder N, Belousov A, Campone M, Abadie J. Canine invasive mammary carcinomas as models of human breast cancer. Part 1: natural history and prognostic factors. Breast Cancer Res. Treatm. [Internet]. 2018; 167:635–648. doi: https://doi.org/gc2pps

Abadie J, Nguyen F, Loussouarn D, Peña L, Gama A, Rieder N, Belousov A, Bemelmans I, Jaillardon L, Ibisch C, Campone M. Canine invasive mammary carcinomas as models of human breast cancer. Part 2: immunophenotypes and prognostic significance. Breast Cancer Res. Treatm. [Internet]. 2018; 167:459–468. doi: https://doi.org/gcxgxv

Nance RL, Sajib AM, Smith BF. Canine models of human cancer: Bridging the gap to improve precision medicine. Prog. Mol. Biol. Transl. Sci. [Internet]. 2022; 189(1):67–99. doi: https://doi.org/mdsk

Gardner HL, Fenger JM, London CA. Dogs as a Model for Cancer. Ann. Rev. Anim. Biosci. [Internet]. 2016; 4:199–222. doi: https://doi.org/gh6r4d

Lawrence J, Cameron D, Argyle D. Species differences in tumour responses to cancer chemotherapy. Philos Trans. R. Soc. Lond. B. Biol. Sci. [Internet]. 2015; 370(1673):20140233. doi: https://doi.org/mdsn

LeBlanc AK, Mazcko CN. Improving human cancer therapy through the evaluation of pet dogs. Nat. Rev. Cancer. [Internet]. 2020; 20:727–742. doi: https://doi.org/gpnwrm

Sokal RR, Rolf FJ. Biometry: The Principles and Practice of Statistics in Biological Research. J. R. Stat. Soc. Ser. A-G. [Internet]. 1970; 133(1):102 https://doi.org/dmx5x6

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Meth. [Internet]. 2012; 9:671–675. doi: https://doi.org/gcwb4q

Gyori BM, Venkatachalam G, Thiagarajan PS, Hsu D, Clement MV. OpenComet: an automated tool for comet assay image analysis. Redox Biol. [Internet]. 2014; 2:457–465. doi: https://doi.org/gsn4qz

Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. [Internet]. 2000; 35(3):206–221. doi: https://doi.org/bbj2dg

Kumaravel TS, Vilhar B, Faux SP, Jha AN. Comet Assay measurements: a perspective. Cell Biol. Toxicol. [Internet]. 2009; 25:53–64. doi: https://doi.org/dm72kx

Miskinich-Lugo ME, Riveros-Duré CD, Quintana-Rotela AA, Ibáñez-Franco EJ, Cabañas-Cristaldo JD, Martínez-Ruiz-Díaz M, Britez DV, Medina-Méreles KG, Montiel DE. Efectos adversos relacionados a infusión endovenosa de ciclofosfamida en pacientes de un hospital de referencia. Rev. Parag. Reumatol. [Internet]. 2022; 8(1):11–15. doi: https://doi.org/mds3

Serrano Frago P, Allepuz-Losa C, Gil-Martínez P, Allué-López M, Mallén-Mateo E, Sancho-Serrano C, Rioja-Sanz. Tratamiento de la cistitis hemorrágica por ciclofosfamida. Revisión de la literatura a propósito de un caso. Actas Urol. Esp. [Internet]. 2005; 29(2):230–233. doi: https://doi.org/f2jf2q

Zubieta R, Retamal MG, Méndez G, Vela I, Facundo J, Manríquez L, López PJ, Letelier N, Escala JM. Cistitis crónica fibrótica-telangectásica por ciclofosfamida. Rev. Chil. Urol. [Internet]. 2004 [cited 16 Aug 2023]; 69(2):179–182. Available in: https://goo.su/hOblfPJ.

Madeddu C, Neri M, Sanna E, Oppi S, Macciò A. Experimental Drugs for Chemotherapy- and Cancer-Related Anemia. J. Exp. Pharmacol. [Internet]. 2021; 13:593–611. doi: https://doi.org/mds5

Natalucci V, Virgili E, Calcagnoli F, Valli G, Agostini D, Zeppa SD, Barbieri, E, Emili, R. Cancer Related Anemia: An Integrated Multitarget Approach and Lifestyle Interventions. Nutrients. [Internet]. 2021; 13(2):482. doi: https://doi.org/gmmqmq

Todorova I, Simeonova G, Simeonov R, Dinev D. Efficacy and toxicity of doxorubicin and cyclophosphamide chemotherapy in dogs with spontaneous mammary tumours. Trakia J. Sci. [Internet]. 2005 [cited 28 Aug 2023]; 3(5):51–58. Available in: https://goo.su/Ibonk.

Withrow SJ, Page R, Vail DM. Withrow and MacEwen’s Small Animal Clinical Oncology. [Internet]. 5th Ed. St. Louis, MO, USA: Elsevier Saunders; 2012. 768 p. doi: https://doi.org/mds6

Simsek C, Esin E, Yalcin S. Metronomic Chemotherapy: A Systematic Review of the Literature and Clinical Experience. J. Oncol. [Internet]. 2019; 2019:5483791. doi: https://doi.org/gjk6kt

Soriano-Lorenzo J, García JS, Lima-Pérez M. Quimioterapia metronómica en pacientes con cáncer de mama metastásico. An. Fac. Med. [Internet]. 2020; 81(1):80-86. doi: https://doi.org/mds9

Soriano-García JL, Lima-Pérez M, González-González J, Batista-Albuerne N, López-Soto MV, Rodríguez-Menéndez M, Loys-Fernández, JL, Montejo-Viamontes, N. Quimioterapia metronómica con ciclofosfamida y metotrexato en pacientes con cáncer de mama metastásico en progresión. Rev. Cubana Med. [Internet]. 2009 [cited 24 Aug 2023]; 48(2):1-14. Available in: https://goo.su/wgEfvg.

Hartmann A, Herkommer K, Glück M, Speit G. DNA-damaging effect of cyclophosphamide on human blood cells in vivo and in vitro studied with the single-cell gel test (comet assay). Environm. Molec. Mutagen. [Internet]. 1995; 25(3):180-187. doi: https://doi.org/fn77z9

Hartmann A, Speit G. Genotoxic effects of chemicals in the single cell gel (SCG) test with human blood cells in relation to the induction of sister-chromatid exchanges (SCE). Mutat. Res. [Internet]. 1995; 346(1):49–56. doi: https://doi.org/c8tdwz

Anderson D, Bishop JB, Garner RC, Ostrosky-Wegman P, Selby PB. Cyclophosphamide: review of its mutagenicity for an assessment of potential germ cell risks. Mutat. Res. [Internet]. 1995; 330(1-2):115–181. doi: https://doi.org/cnr42g

Andersson M, Agurell E, Vaghef H, Bolcsfoldi G, Hellman B. Extended-term cultures of human T-lymphocytes and the comet assay: a useful combination when testing for genotoxicity in vitro? Mutat. Res. [Internet]. 2003; 540(1):43–55. doi: https://doi.org/dnw5v6

Yusuf AT, Vian L, Sabatier R, Cano JP. In vitro detection of indirect-acting genotoxins in the comet assay using Hep G2 cells. Mutat. Res. [Internet]. 2000; 468(2):227–234. doi: https://doi.org/ck8gxc

Uhl M, Helma C, Knasmüller S. Evaluation of the single cell gel electrophoresis assay with human hepatoma (Hep G2) cells. Mutat. Res. [Internet]. 2000; 468(2):213–225. doi: https://doi.org/fmzpq4

Robbiano L, Carrozzino R, Bacigalupo M, Corbu C, Brambilla G. Correlation between induction of DNA fragmentation in urinary bladder cells from rats and humans and tissue-specific carcinogenic activity. Toxicol. [Internet]. 2002; 179(1-2):115–128. doi: https://doi.org/cx53td

Frenzilli G, Bosco E, Barale R. Validation of single cell gel assay in human leukocytes with 18 reference compounds. Mutat. Res. [Internet]. 2000; 468(2):93–108. doi: https://doi.org/fpcds3

Kopjar N, Milas I, Garaj-Vrhovac V, Gamulin M. Alkaline comet assay study with breast cancer patients: evaluation of baseline and chemotherapy-induced DNA damage in non-target cells. Clin. Exp. Med. [Internet]. 2006; 6:177–190. doi: https://doi.org/fxbrnm

Paz MFCJ, de Alencar MVOB, Gomes Junior AL, da Conceição-Machado K, Islam MT, Ali ES, Shill MC, Ahmed MI, Uddin SJ, da Mata AMOF, de Carvalho RM, da Conceição-Machado K, Sobral ALP, da Silva FCC, de Castro e Souza JM, Arcanjo DDR, Ferreira PMP, Mishra SK, da Silva J, de Carvalho Melo-Cavalcante AA. Correlations between Risk Factors for Breast Cancer and Genetic Instability in Cancer Patients-A Clin. Perspect. Study. Front. Genet. [Internet]. 2017; 8:236. doi: https://doi.org/gc4stv

Smith TR, Miller MS, Lohman KK, Case LD, Hu JJ. DNA damage and breast cancer risk. Carcinogen. [Internet]. 2003; 24(5):883–889. doi: https://doi.org/d3f5m9

Lam FC. The DNA damage response - from cell biology to human disease. J. Transl. Genet. Genom. [Internet]. 2022; 6:204–222. doi: https://doi.org/mdth

Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front. Genet. [Internet]. 2015; 6:157. doi: https://doi.org/gnsfph

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. [Internet]. 2017; 58(5):235–263. doi: https://doi.org/f99rs5

Publicado
2024-01-29
Cómo citar
1.
Chalco–Torres LE, Aranguren–Méndez JA, Guerrero–López AE, Nirchio–Tursellino M. Evaluación del daño en el ADN inducido por quimioterapia metronómica en leucocitos de sangre periférica de pacientes caninos con cáncer de mama mediante el ensayo cometa alcalino. Rev. Cient. FCV-LUZ [Internet]. 29 de enero de 2024 [citado 29 de abril de 2024];34(1):8. Disponible en: https://www.produccioncientificaluz.org/index.php/cientifica/article/view/41571
Sección
Medicina Veterinaria