Supervivencia de un cultivo mixto de cepas probióticas microencapsuladas frente a la barrera gastrointestinal in vitro

  • Luz Alba Caballero–Pérez University of Pamplona. GIBA Research Group. Pamplona, Norte de Santander, Colombia - University of Havana, Pharmacy and Food Institute. Havana, Cuba
  • Rene Tejedor–Arias University of Havana, Pharmacy and Food Institute. Havana, Cuba
  • Elaysa Josefina Salas–Osorio Universidad de los Andes, Department of Biopathology. Mérida, Venezuela
Palabras clave: Barrera gastrointestinal, protección, cepas probióticas, prebióticos, supervivencia, cepas microencapsuladas

Resumen

Los materiales encapsulantes conservan la viabilidad de los probióticos en condiciones gastrointestinales. El objetivo de la investigación fue evaluar el efecto protector de una matriz encapsulante, compuesta por primera vez con tres materiales prebióticos para mantener la viabilidad de un cultivo mixto de probióticos microencapsulados por secado por aspersión, bajo condiciones gastrointestinales y prebióticas simuladas. Seguidamente, se evaluaron las microcápsulas de cuatro formulaciones con mejor viabilidad, inoculando cepas microencapsuladas y libres en caldo MRS, ajustando tres valores de pH, sales biliares, caldo con y sin carbohidrato (prueba prebiótica), incubados a 36 ± 1 °C / 24 h; luego se calculó el porcentaje de supervivencia celular postratamiento. Demostrando que, la formulación 1 presentó mayor barrera de protección con recuentos promedio: 7,31 log ufc·g-1 lactobacilos y 7,75 log ufc·g-1 (Saccharomyces boulardii) / 4 h (SGF), alcanzando 6,78 log ufc·g-1 en las cuatro formulaciones (SIF) con una mayor tasa de supervivencia promedio 79,79% y 85,06% SGF y SIF, in vitro. Por otra parte, la prueba prebiótica mantuvo recuentos promedio de 9,40 log ufc·g-1 (Lactobacillus spp.) y 6,99 log ufc·g-1 (S. boulardii) / 24 h. Se demostró la protección ejercida por las microesferas en condiciones gastrointestinales y prebióticas simuladas a niveles terapéuticos (≥ 106 ufc·mL-1).

Descargas

La descarga de datos todavía no está disponible.

Citas

Manivel–Chávez RA, Campos–Arroyo AG. Probióticos, prebióticos y simbióticos: Aliados en el cuidado de la salud. Rev. Milenaria Cien. Arte. [Internet]. 2020 [consultado 24 Jul 2023]; 16(10):22–23. Disponible en: https://bit.ly/48HvVNj.

Tripathi MK, Giri SK. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods. [Internet]. 2014; 9:225–241. doi: https://doi.org/f58s8b

Ávila–Reyes SV, García–Suárez FJ, Jiménez MT, San Martín–González, MF, Bello–Pérez LA. Protection of L. rhamnosus by spray–drying using two prebiotics colloids to enhance the viability. Carbohydrate Polymers. [Internet]. 2014; 102:423–432. doi: https://doi.org/f5tzpg

Arslan S, Erbas M, Tontul I, Topuz, YA. Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT–Food Sci. Technol. [Internet]. 2015; 63(1):685–690. doi: https://doi.org/d58t

Gámez HJ, Ramírez C, Aguirre D. Fermentation kinetics of Lactobacillus plantarum in an enriched culture medium as probiotic potential. Rev. Fac. Med. Vet. Zoot. [Internet]. 2013; 7(2):37–53. doi: https://doi.org/kxr7

Liao LK, Wei, XY, Gong X, Li JH, Huang T, Xiong T. Microencapsulation of Lactobacillus casei LK–1 by spray drying related to its stability and in vitro digestion. LWT Food Sci. Technol. [Internet]. 2017; 82:82–89. doi: https://doi.org/kxr8

Da–Silva PT, Fries M LL, De Menezes CR, Da Silva CDB, Soriani HH, De–Oliveira BJ, Ribeiro RF. Microencapsulation of probiotics by spray drying: evaluation of survival under simulated gastrointestinal conditions and availability under different storage temperatures. J. Sci. Rural. [Internet]. 2015; 45(7):1342–1348. doi: https://doi.org/kxsb

McFarland LV. Systematic review and meta–analysis of Saccharomyces boulardii in adult patients. World J. Gastr. [Internet]. 2010; 16(18):2202–2222. doi: https://doi.org/ck3485

Corrales–Benedetti D, Arias–Palacios J. Probiotics and their use in the treatment of diseases. Biomed. Sci. J. [Internet]. 2020; 9(1):54–66. doi: https://doi.org/kxsc

Homayouni–Rad A, Mortazavian AM, Mashkani MG, Hajipour N, Pourjafar H. Effect of Alyssum homolocarpum mucilage and inulin microencapsulation on the survival of Lactobacillus casei in simulated gastrointestinal and high – temperature conditions. Biocatal. Agric. Biotechnol. [Internet]. 2021; 35:102075. doi: https://doi.org/gprgf8

Zamora–Vega R, Montañez–Soto JL., Martínez–Flores HE, Flores–Magallón R, Muñoz–Ruiz CV, Venegas–González J, Ariza–Ortega TDJ. Effect of incorporating prebiotics in coating materials for the microencapsulation of Saccharomyces boulardii. Intern. J. Food Sci. Nutr. [Internet]. 2012; 63(8):930–935. doi: https://doi.org/kxsd

Yonekura L, Sun H, Soukoulis C, Fisk I. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. J. Funct. Foods. 2014; 6:205–214. doi: https://doi.org/f5tc8h

Ríos–Aguirre S, Gil–Garzón MA. Microencapsulación por secado por aspersión de compuestos bioactivos en diversas matrices: una revisión. Tecnológicas. [Internet]. 2021; 24(51):206–229. doi: https://doi.org/kxsf

Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β–glycans and gut microbiota: a comprehensive review. Crit. Rev. Food Sci. Nutr. [Internet]. 2023; 1–32. doi: https://doi.org/kxsj

Yuan C, Hu R, He, L, Hu J, Liu, H. Extraction and prebiotic potential of β–glycan from highland barley and its application in probiotic microcapsules. Food Hydrocoll, [Internet]. 2023; 139:108520. doi: https://doi.org/kxsk

Ta LP, Bujna E, Antal O, Ladányi M, Juhász R, Szécsi A, Nguyen QD. Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacterium Lactobacillus casei 01 strain. Intern. J. Biol. Macromol. [Internet]. 2021; 183:1136–1144. doi: https://doi.org/kxsn

Eckert C, Serpa, VG, Felipe dos Santos AC, Marinês da Costa S, Dalpubel V, Lehn, DN, Volken de SCF. Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT Food Sci. Technol. [Internet]. 2017; 82:176–183. doi: https://doi.org/kx93

Ceja–Medina LI, Tepic IT, Medina–Torres L, González–Ávila M, Martínez–Rodríguez JC, Andrade–González I, Calderón–Santoyo M, Ragazzo–Sánchez JA, Ortiz–Basurto RI. In vitro synbiotic activity of Lactobacillus plantarum encapsulated with mixtures of Aloe vera mucilage, agave fructans and food additives as wall materials. Rev. Mex. Ing. Chem, [Internet]. 2021; 20(2):711–723. doi: https://doi.org/kx94

Fritzen–Freire CB, Prudencio ES, Amboni Renata DMC, Pinto SS, Negrao–Murakami AN, Murakami FS. Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res. Intern. [Internet]. 2012; 45(1):306–312. doi: https://doi.org/cmc956

Luca L, Oroian M. Influence of different prebiotics on viability of Lactobacillus casei, Lactobacillus plantarum and Lactobacillus rhamnosus encapsulated in alginate microcapsules. Foods. [Internet]. 2021; 10(4): 710. doi: https://doi.org/kx95

Rodríguez‐Restrepo YA, Giraldo GI, Rodríguez‐Barona S. Solubility as a fundamental variable in the characterization of wall material by spray drying of food components: application to microencapsulation of Bifidobacterium animalis subsp. lactis. J. Food Process Eng. [Internet]. 2017; 40(6):e12557 doi: https://doi.org/kx96

Mainville I, Arcand Y, Farnworth ERA. Dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Intern. J. Food Microbiol. [Internet]. 2005; 99(3):287–296. doi: https://doi.org/d5qcgr

Mendoza–Madrigal AG, Duran–Paramo E, del Toro GV, Chanona–Pérez JJ, Martínez–Ramírez OC, Arzate–Vázquez I. Viability kinetics of free and immobilized Bifidobacterium bifidum in presence of food samples under gastrointestinal in vitro conditions. Rev. Mex. Ing. Chem. [Internet]. 2017; 16(1):159–168. doi: https://doi.org/kx97

Tao T, Ding Z, Hou D, Prakash S, Zhao Y, Fan Z, Zhang D, Wang Z, Liu M, Han J. Influence of polysaccharide as co–encapsulant on powder characteristics, survival and viability of microencapsulated Lactobacillus paracasei Lpc–37 by spray drying. J. Food Eng. [Internet]. 2019; 252:10–17. doi: https://doi.org/kx98

Montoya–Soto JG, González–Laredo RF, Medina–Torres L, Rutiaga–Quiñones OM, Gallegos–Infante JA, Ochoa–Martínez LA. Recent Developments on Wall Materials for The Microencapsulation of Probiotics: A Review. Tecnocienc. Chihuahua. [Internet]. 2023; 17(1):e1140. doi: https://doi.org/kx99

Gandomi H, Abbaszadeh S, Misaghi A, Bokaie S, Noori N. Effect of chitosan–alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT–Food Sci. Technol. [Internet]. 2016; 69:365–371. doi: https://doi.org/f8gxm9

Nunes GL, Motta MH, Cichoski AJ, Wagner R, Muller ÉI, Codevilla CF, da Silva CdB, de Menezes CR. Encapsulation of Lactobacillus acidophilus La–5 and Bifidobacterium Bb–12 by spray drying and evaluation of its resistance in simulated gastrointestinal conditions, thermal treatments and storage conditions. Cienc. Rural. [Internet]. 2018; 48(6):e20180035. doi: https://doi.org/kzbb

Jurado–Gámez H, Sinsajoa–Tepud M, Narváez–Rodríguez M. Evaluation of microencapsulated Lactobacillus plantarum and its viability under simulated gastrointestinal conditions and inhibition against Escherichia coli O157: H7. Rev. Fac. Med. Vet. Zoot. [Internet]. 2019; 66(3):231–244. doi: https://doi.org/kxr7

Moumita S, Goderska K, Johnson EM, Das B, Indira D, Yadav R, Jayabalan, R. Evaluation of the viability of free and encapsulated lactic acid bacteria using in–vitro gastro intestinal model and survivability studies of symbiotic microcapsules in dry food matrix during storage. LWT–Food Sci. Technol. [Internet]. 2017; 77:460–477. doi: https://doi.org/f9ptjd

Madsen M, Rønne ME, Li R, Greco I, Ipsen R, Svensson, B. Simulated gastrointestinal digestion of protein alginate complexes: Effects of whey protein cross–linking and the composition and degradation of alginate. Food Funct. [Internet]. 2022; 13(16):8375–8387. doi: https://doi.org/kzbk

Sun W, Nguyen QD, Süli BK, Alarawi F, Szécsi A, Gupta VK, Friedrich LF, Gere A, Bujna E. Microencapsulation and Application of Probiotic Bacteria Lactiplantibacillus plantarum 299v Strain. Microorgan. [Internet]. 2023; 11(4):947. doi: https://doi.org/kzbm

Caycedo–Lozano L, Ramírez LCC, Suárez DMT. Bacteria, their nutrition and growth: a look from chemistry. Nova. 2021; 19(36):49–94. doi: https://doi.org/jmwm

Moon NJ. Growth inhibition of acid–tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. J. Appl. Bact. 1983; 55(3):453–460. doi: https://doi.org/b7x9zd

Da Silva É, Costa D, Santos E, Moyer K, Hellings E, Kung L Jr. The effects of Lactobacillus hilgardii 4785 and Lactobacillus buchneri 40788 on the microbiome, fermentation, and aerobic stability of corn silage ensiled for various times. J. Dairy Sci. 2021; 104(10):10678–10698. doi: https://doi.org/kzbn

Publicado
2023-10-13
Cómo citar
1.
Caballero–Pérez LA, Tejedor–Arias R, Salas–Osorio EJ. Supervivencia de un cultivo mixto de cepas probióticas microencapsuladas frente a la barrera gastrointestinal in vitro. Rev. Cient. FCV-LUZ [Internet]. 13 de octubre de 2023 [citado 9 de mayo de 2024];33(2):9. Disponible en: https://www.produccioncientificaluz.org/index.php/cientifica/article/view/40988
Sección
Producción Animal