Investigación del efecto de la coenzima Q10 sobre el daño testicular inducido por ciclofosfamida en ratas macho

  • Volkan Koşal Van Yuzuncu Yil University, Faculty of Veterinary Medicine, Department of Artificial Insemination. Van, Turkey
  • İhsan Rua Private Clinic, Department of Obstetrics and Gynecology. Van, Turkey
  • Veysel Yüksek Van Yuzuncu Yil University, Faculty of Veterinary Medicine, Department of Biochemistry. Van, Turkey
  • Ömer Faruk Keleş Van Yuzuncu Yil University, Faculty of Veterinary Medicine, Department of Pathology. Van, Turkey
Palabras clave: Ciclofosfamida, coenzima Q10, esperma, testículo

Resumen

La ciclofosfamida (CP) es uno de los agentes quimioterapéuticos preferidos en todo el mundo. La CP tiene efectos negativos sobre los testículos, la espermatogénesis y las hormonas reproductivas. El objetivo de este estudio era determinar el efecto protector de la coenzima Q10 (CoQ10) sobre los daños causados por la CP. La CoQ10 se utiliza en el tratamiento de problemas de infertilidad y se encuentra de forma natural en los testículos y el líquido seminal. Se dividieron 36 ratas macho Albino Wistar en seis grupos (Control, Sham, Ciclofosfamida (CP), Coenzima Q10 (CoQ10), CP + CoQ10 I, CP + CoQ10 II), con seis animales en cada grupo. El análisis del semen incluyó investigaciones del daño del ADN espermático, la motilidad, la proporción de espermatozoides anormales y la densidad. Se realizó un examen histopatológico y una evaluación de los parámetros de estrés oxidativo en los testículos. Además, se midieron los niveles séricos de FSH, LH y testosterona. La administración de CoQ10 aumentó la tasa de motilidad, la densidad y los niveles de testosterona en el daño testicular causado por CP (P<0,05). Además, se observó que se redujo la proporción anormal de espermatozoides, el daño del DNA espermático y el estrés oxidativo (P<0,05). En base a los resultados de este estudio, el uso de CoQ10 junto con CP tiene el potencial de aliviar los problemas de infertilidad masculina que pueden surgir de la administración de CP.

Descargas

La descarga de datos todavía no está disponible.

Citas

Alkhalaf MI, Alansari WS, Alshubaily FA, Alnajeebi AM, Eskandrani AA, Tashkandi MA. Chemoprotective effects of inositol hexaphosphate against cyclophosphamide–induced testicular damage in rats. Sci. Rep. [Internet]. 2020; 10(1):12599. doi: https://doi.org/kp6d

Türk G, Çeribaşi AO, Sakin F, Sönmez M, Ateşşahin A. Antiperoxidative and anti–apoptotic effects of lycopene and ellagic acid on cyclophosphamide–induced testicular lipid peroxidation and apoptosis. Reprod. Fertil. Dev. [Internet]. 2010; 22(4):587. doi: https://doi.org/bt44vx

Fusco R, Salinaro AT, Siracusa R, D’Amico R, Impellizzeri D, Scuto M. Hidrox® Counteracts Cyclophosphamide–Induced Male Infertility through NRF2 Pathways in a Mouse Model. Antioxid. [Internet]. 2021; 10(5):778. doi: https://doi.org/gm4jvs

Le X, Luo P, Gu Y, Tao Y, Liu H. Squid ink polysaccharide reduces cyclophosphamide‐induced testicular damage via Nrf2/ARE activation pathway in mice. Iran J. Basic Med. Sci. 2015; 18(8): 4633467. PMID: 26557973.

Gajjar R, Miller SD, Meyers KE, Ginsberg JP. Fertility preservation in patients receiving cyclophosphamide therapy for renal disease. Pediatr. Nephrol. [Internet]. 2015; 30(7):1099–106. doi: https://doi.org/f7dtxn

Smart E, Lopes F, Rice S, Nagy B, Anderson RA, Mitchell R. Chemotherapy drugs cyclophosphamide, cisplatin and doxorubicin induce germ cell loss in an in vitro model of the prepubertal testis. Sci. Rep. [Internet]. 2018; 8(1):1773. doi: https://doi.org/gcxjm6

Liu X, Li Q, Wang Z, Liu F. Identification of abnormal protein expressions associated with mouse spermatogenesis induced by cyclophosphamide. J. Cell Mol. Med. [Internet]. 2021; 25(3):1624–32. doi: https://doi.org/kp6f

Iftikhar A, Akhtar MF, Saleem A, Riaz A, Zehravi M, Rahman MDH. Comparative Potential of Zinc Sulfate, L–Carnitine, Lycopene, and Coenzyme Q10 on Cadmium–Induced Male Infertility. Intern. J. Endocrinol. [Internet]. 2022; 2022:1–13. doi: https://doi.org/kp6g

Pexoito de B. I, Haas RH. CoQ10 and Aging. Biol. [Internet]. 2019; 8(2):28. doi: https://doi.org/kp6h

Lin YS, Liu CY, Chen PW, Wang CY, Chen HC, Tsao CW. Coenzyme Q10 amends testicular function and spermatogenesis in male mice exposed to cigarette. Ame. J. Transl. Res. [Internet]. 2021; 13(9):10142–10154. PMID: 34650686.

Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract. Res. Clin. Endocrinol. Metab. [Internet]. 2012; 26(6):711–23. doi: https://doi.org/f4hkdw

Wu Y, Li H, Zhao X, Baki G, Ma C, Yao Y. Differential expression of circRNAs of testes with high and low sperm motility in Yili geese. Front. Genet. [Internet]. 2022; 13:970097. doi: https://doi.org/kp6j

Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. [Internet]. 2007; 7:41–50. doi: https://doi.org/c6hxfx

Littarru GP, Tiano L, Belardinelli R, Watts GF. Coenzyme Q10, endothelial function, and cardiovascular disease. BioFactors. [Internet]. 2011; 37(5):366–73. doi: https://doi.org/fmtsvc

Masoumi M, Salehi M, Angaji SA, Hashemi M. Effects of Coenzyme Q10 and Diamond Nanoparticles on Ischemia–Reperfusion–Induced Testicular Damages in Rats. GMJ. [Internet]. 2021; 10:e2029. doi: https://doi.org/kp6k

Ax RL, Dally MR, Didin BA, Lenz RW, Love CC, Varner DD, Hagez B, Bellin ME. Semen Evaluation. In: Hafez ESE, Hafez B, editors. Reproduction in Farm Animals. 7th ed. Hoboken (NJ): Wiley–Blackwell; 2013. p 365–75.

Najafi M, Cheki M, Amini P, Javad A, Shabeeb D, Eleojo Musa A. Evaluating the protective effect of resveratrol, Q10, and alpha–lipoic acid on radiation–induced mice spermatogenesis injury: A histopathological study. IJRM. [Internet]. 2019; 17(12):907–14. doi: https://doi.org/kp6p

Kehe K, Balszuweit F, Steinritz D, Thiermann H. Molecular toxicology of sulfur mustard–induced cutaneous inflammation and blistering. Toxicol. [Internet]. 2009; 263(1):12–9. doi: https://doi.org/b676s9

Cao Y, Wang X, Li S, Wang H, Yu L, Wang P. The Effects of L–Carnitine Against Cyclophosphamide–Induced Injuries in Mouse Testis. Basic Clin. Pharmacol. Toxicol. [Internet]. 2017; 120(2):152–8. doi: https://doi.org/f9ndjk

Niakani A, Farrokhi F. Decapeptyl ameliorates cyclophosphamide–induced reproductive toxicity in male Balb/C mice: histomorphometric, stereologic and hormonal evidences. Iran J. Reprod. Med. [Internet]. 2013; 11(10):791–800. PMID: 24639699

Hosseini A. Cyclophosphamide–induced testicular toxicity ameliorate by American ginseng treatment: An experimental study. Intern. J. Reprod. Biomed. 2018; 16(11):711–8. PMID: 30775687

Hamzeh M, Hosseinimehr S, Karimpour A, Mohammadi H, Khalatbary A, Amiri F. Cerium oxide nanoparticles protect cyclophosphamide–induced testicular toxicity in mice. Intern. J. Prev. Med. [Internet]. 2019; 10(1):5. doi: https://doi.org/kp6r

Briseño–Bugarín J, Hernández–Ochoa I, Araujo–Padilla X, Mojica–Villegas MA, Montaño–González RI, Gutiérrez–Salmeán G. Phycobiliproteins Ameliorate Gonadal Toxicity in Male Mice Treated with Cyclophosphamide, Nutrients. [Internet]. 2021; 13(8):2616. doi: https://doi.org/kp6s

Li J, You Y, Zhang P, Huang X, Dong L, Yang F, Yu X, Chang D. Qiangjing tablets repair of blood–testis barrier dysfunction in rats via regulating oxidative stress and p38 MAPK pathway. BMC Complem. Med. Ther. [Internet]. 2022; 22(1):133. doi: https://doi.org/kp6t

Özati̇K FY, Özati̇K O, Tekşen Y, Yi̇Ği̇Taslan S, Ari NS. Protective and therapeutic effect of hydrogen sulfide on hemorrhagic cystitis and testis dysfunction induced with cyclophosphamide. Turk J. Med. Sci. [Internet]. 2021; 51(3):1530–42. doi: https://doi.org/kp6v

Irani S, Zhandi M, Sadeghi M, Yousefi AR, Marzban H, Rafieian‐Naeini HR. The effect of dietary supplementation of coenzyme Q10 on reproductive variables of cadmium‐challenged male Japanese quails (Coturnix Japonica). Vet. Med. Sci. [Internet]. 2023; 9(2):837–850. doi: https://doi.org/kp6w

El–Khadragy M, Al–Megrin WA, AlSadhan NA, Metwally DM, El–Hennamy RE, Salem FEH, Kassab RB, Abdel–Moneim AE. Impact of Coenzyme Q10 Administration on Lead Acetate–Induced Testicular Damage in Rats. Oxid. Med. Cell Longev. [Internet]. 2020; 2020:1–12. doi: https://doi.org/gnsdxb

Diemer T, Allen JA, Hales KH, Hales DB. Reactive Oxygen Disrupts Mitochondria in MA–10 Tumor Leydig Cells and Inhibits Steroidogenic Acute Regulatory (StAR) Protein and Steroidogenesis. Endocrinol. [Internet]. 2003; 144(7):2882–91. doi: https://doi.org/ddcb6g

Manna PR, Stetson CL, Slominski AT, Pruitt K. Role of the steroidogenic acute regulatory protein in health and disease. Endocrinol. [Internet]. 2016; 51(1):7–21. doi: https://doi.org/f8n3qd

Tsao CW, Hsu YJ, Tseng XT, Chang TC, Tsao CH, Liu CY. Does Coenzyme Q10 Supplementation Improve Testicular Function and Spermatogenesis in Male Mice with Chronic Kidney Disease? Biol. [Internet]. 2021; 10(8):786. doi: https://doi.org/kp6x

Balercia G, Mosca F, Mantero F, Boscaro M, Mancini A, Ricciardo–Lamonica G, Littaru G. Coenzyme q10 supplementation in infertile men with idiopathic asthenozoospermia: an open, uncontrolled pilot study. Fertil. Steril. [Internet]. 2004; 81(1):93–8. doi: https://doi.org/djqpbn

Smorag L, Zheng Y, Nolte J, Zechner U, Engel W, Pantakani DVK. MicroRNA signature in various cell types of mouse spermatogenesis: Evidence for stage–specifically expressed miRNA–221, –203 and –34b–5p mediated spermatogenesis regulation. Biol. Cell. [Internet]. 2012; 104(11):677–92. doi: https://doi.org/kp6z

Publicado
2023-08-22
Cómo citar
1.
Koşal V, Rua İhsan, Yüksek V, Keleş Ömer F. Investigación del efecto de la coenzima Q10 sobre el daño testicular inducido por ciclofosfamida en ratas macho. Rev. Cient. FCV-LUZ [Internet]. 22 de agosto de 2023 [citado 10 de mayo de 2024];33(2):7. Disponible en: https://www.produccioncientificaluz.org/index.php/cientifica/article/view/40743
Sección
Medicina Veterinaria