Efecto de la fase del ciclo estral en la maduración in vitro de ovocitos de gatas domésticas criadas en condiciones tropicales

  • Enmar Monasterio–Alemán Universidad del Zulia, Facultad de Ciencias Veterinarias. Maracaibo, Venezuela
  • Luis Monasterio–Oquendo Universidad del Zulia, Facultad de Ciencias Veterinarias. Maracaibo, Venezuela
  • Liset Zambrano–Vivas Universidad del Zulia, Facultad de Ciencias Veterinarias, Unidad de Investigación en Biotecnología Animal. Maracaibo, Venezuela
  • Verónica Arboleda–Caldera Universidad del Zulia, Facultad de Ciencias Veterinarias, Unidad de Investigación en Biotecnología Animal. Maracaibo, Venezuela
  • Carla Osorio–Melendez Universidad del Zulia, Facultad de Ciencias Veterinarias, Unidad de Investigación en Biotecnología Animal. Maracaibo, Venezuela
  • José Aranguren–Méndez Universidad del Zulia, Facultad de Ciencias Veterinarias. Maracaibo, Venezuela
  • Fernando Perea–Ganchou Universidad de Cuenca, Facultad de Ciencias Agropecuarias. Cuenca, Ecuador
  • Hugo Hernández–Fonseca Saint George's University, School of Veterinary Medicine, Anatomy, Physiology and Pharmacology Department. True Blue, St. George's, Grenada, WI
Palabras clave: Gata, reproducción, biotecnología, sistema in vitro, trópico

Resumen

La maduración de los ovocitos es un paso crítico para la producción de embriones in vitro. En las gatas, los hallazgos sobre la influencia de la fase del ciclo estral en la calidad y maduración de los ovocitos son contradictorios. Se sabe poco sobre este fenómeno en las gatas en los trópicos. El objetivo de este estudio fue evaluar el efecto de la fase del ciclo estral sobre la calidad de los ovocitos y la posterior capacidad de completar la maduración nuclear en gatas de un ambiente tropical. Se recogieron ovarios de 18 gatas sexualmente maduras durante la ovariohisterectomía. Los complejos cúmulo–ovocito (COCs) fueron obtenidos de los folículos mediante el corte y la fragmentación de la corteza ovárica. Según sus características morfológicas, los COCs se clasificaron en grados I–II (aptos) y III–IV (no aptos). Sólo los COCs de buena calidad de cada gata se cultivaron para su maduración in vitro. La maduración nuclear de los ovocitos se evaluó por la presencia de una placa en telofase I o metafase II con extrusión del primer corpúsculo polar. Se obtuvo un número significativamente mayor de ovocitos por ovario en las gatas en fase inactiva que en fase folicular o lútea. Las proporciones de COCs fueron similares entre los grupos. La tasa de maduración de los ovocitos no difirió entre las fases del ciclo estral, ni tampoco la proporción de ovocitos no maduros o degenerados. La edad de las gatas no afectó al porcentaje de maduración de los ovocitos. En conclusión, la calidad y la tasa de maduración de los ovocitos fueron similares en las tres etapas del ciclo estral examinadas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Veraguas D, Echeverry D, Castro FO, Rodriguez–Alvarez Ll. Applied biotechnologies in the conservation of wild felids: In vitro embryo production and cellular regenerative therapies. In: Shrivastav AB, Singh KP, editors. Big Cats [Internet]. London: Intech. Open. 2017. p. 47–71. doi: https://doi.org/kpcj

Pope CE. Aspects of in vivo oocyte production, blastocyst development, and embryo transfer in the cat. Theriogenol. [Internet]. 2014; 81(1):126–37. doi: https://doi.org/kpck

Pope CE. Thirty years of assisted reproductive technology in the domestic cat: A selected summary. Rev. Bras. Reprod. Anim. 2019; 43(2):129–136.

Farstad W. Current state in biotechnology in canine and feline reproduction. Anim. Reprod. Sci. [Internet]. 2000; 60–61:375–387. doi: https://doi.org/cmfnmk

Luvoni GC. Current progress on assisted reproduction in dogs and cats: in vitro embryo production. Reprod. Nutr. Dev. [Internet]. 2000; 40:505–512. doi: https://doi.org/bd9sqp

Sánchez A; López L; Silva M; Berland M. Maduración in vitro de ovocitos de gatas tratadas con hormona folículo estimulante (FSH). Rev. Cientif. FCV–LUZ. 2006; 26(2):124–128.

Goodrowe KL, Hay M, King W. Nuclear maturation of domestic cat ovarian oocytes in vitro. Biol. Reprod. [Internet]. 1991; 45:466–470. doi: https://doi.org/bhz65s

Johnston L, Donoghue A, O´Brien S, Wildt D. Culture medium and protein supplementation influence in vitro fertilization and embryo development in the domestic cat. J. Exp. Zool. [Internet]. 1991; 257:350–359. doi: https://doi.org/bfpvkg

Roth T, Swanson W, Wildt D. Development competence of domestic cat embryos fertilized in vivo versus in vitro. Biol. Reprod. [Internet]. 1994; 51:441–451. doi: https://doi.org/c9ss9b

Prochowska S, Nizanski W, Partyka A, Kochan J, Młodawska W, Nowak A, Skotnicki J, Grega T, Pałys M. The use of human and bovine commercial media for oocyte maturation and embryo development in the domestic cat (Felis catus). Reprod. Domest. Anim. [Internet]. 2019; 54(4):719–726. doi: https://doi.org/kpcm

Wlodarczyk R, Bukowska D, Jackowska M, Mucha S, Jaskowski JM. In vitro maturation and degeneration of domestic cat oocytes collected from ovaries stored at various temperatures. Vet. Med. [Internet]. 2009; 54(10):491–497. doi: https://doi.org/kpcn

Wolfe B, Wildt D. Development to blastocyst of domestic cat oocytes matured and fertilized in vitro after prolonged cold storage. J. Reprod. Fert. [Internet]. 1996; 106:135–141. doi: https://doi.org/bb5g96

Yildirim K, Vural MR, Küplülü S, Ozcan Z, Polat I.M. The effects of EGF and IGF–1 on FSH–mediated in vitro maturation of domestic cat oocytes derived from follicular and luteal stages. Reprod. Biol. [Internet]. 2014; 14(2):122–127. doi: https://doi.org/f59bxx

Sowińska N, Frankowska K, Filipczyk A, Adamaszek A, Nalik K, Fic K, Pietsch–Fulbiszewska A. The effect of cumulus cells on domestic cat (Felis catus) oocytes during in vitro maturation and fertilization. Reprod. Domest. Anim. [Internet]. 2017; 52(Suppl 2):108–113. doi: https://doi.org/kpcq

Martins LM, Fernandes CB, Villaverde A, Landim–Alveranga FC, Lopes MD. The seasonal and ovarian status effects on in vitro production of domestic cat embryos between Equator and Tropic of Capricorn. Pesq. Vet. Bras. 2014; 34(3):277–280.

Uchikura K, Nagano M, Hishinuma M. The effect of ovarian status and follicular diameter on maturational ability of domestic cat oocytes. J. Vet. Med. Sci. [Internet]. 2011; 73(5):561–566. doi: https://doi.org/cjw2nz

Feldman EC, Nelson RW, Reusch C, Scott–Moncrieff, JC. Canine and Feline Endocrinology. 4th ed. Philadelphia: Saunders; 2014. 688 p.

Johnston LA, O'brien SJ, Wildt DE. In vitro maturation and fertilization of domestic cat follicular oocytes. Gamete Res. [Internet]. 1989; 24(3):343–56. doi: https://doi.org/bhrqrg

Karja N, Otoi T, Murakami M, Fahrudin M, Suzuki T. In vitro maturation, fertilization and development of domestic cat oocytes recovered from ovaries collected at three stages of the reproductive cycle. Theriogenol. [Internet]. 2002; 57(9):2289–2298. doi: https://doi.org/d2bzdr

Naoi H, Agung B, Karja NW, Wongsrikeao P, Shimizu R, Taniguchi M, Otoi T. Effects of the reproductive status on morphological oocyte quality and developmental competence of oocytes after in vitro fertilization and somatic cell nuclear transfer in cat. Reprod. Domest. Anim. 2008; 43(2):157–161.

Schmidt PM. Feline breeding management. Vet. Clin. North Am. Small Anim. Pract. [Internet]. 1986; 16(3):435–451. doi: https://doi.org/bj54bs

Hurni H. Daylength and breeding in the domestic cat. Lab. Anim. [Internet]. 1981; 15(3):229–233. doi: https://doi.org/b739d7

Hedlund CH. Surgery of the reproductive and genital systems. In: Fossun TW, editor. Small Animal Surgery. 2nd ed. St Louis, USA: Mosby. 2002. 122 p.

Wood T, Wildt D. Effect of the quality of the cumulus–oocyte complex in the domestic cat on the ability of oocytes to mature, fertilize and develop into blastocysts in vitro. J. Reprod. [Internet]. Fert. 1997; 110:355–360. doi: https://doi.org/dhfqw8

Wood T, Montali R, Wildt D. Follicle–oocyte atresia and temporal taphonomy in cold–stored domestic cat ovaries. Mol. Reprod. Dev. [Internet]. 1997; 46:190–200. doi: https://doi.org/cgzcs6

Freistedt P, Stojkovic M, Wolf E. Efficient in vitro production of cat embryos in modified synthetic oviduct fluid medium: effects of season and ovarian status. Biol. Reprod. [Internet]. 2001; 65(1):9–13. doi: https://doi.org/fnjjwk

Brevini TA, Cillo F, Antonini S, Gandolfi F. Effects of endocrine disrupters on the oocytes and embryos of farm animals. Reprod. Dom. Anim. [Internet]. 2005; 40(4):291–299. doi: https://doi.org/d69j7p

Gao Y, Chen F, Kong Qq, Ning Sf, Yuan Hj, Lian Hy, Luo Mj, Tan Jh. Stresses on female mice impair oocyte developmental potential: effects of stress severity and duration on oocytes at the growing follicle stage. Reprod. Sci. [Internet]. 2016; 23(9):1148–1157. doi: https://doi.org/kpcw

Argudo DE, Tenemaza MA, Merchán Sl, Balvoa JA, Méndez MS, Soria ME, Galarza LR, Ayala LE, Hernández–Fonseca HJ, Perea MS, Perea FP. Intraovarian influence of bovine corpus luteum on oocyte morphometry and developmental competence, embryo production and cryotolerance. Theriogenol. [Internet]. 2020; 155:232–239. doi: https://doi.org/kpcx

Gonzalez–Bulnes A, Berlinguer F, Cocero MJ, Garcia–Garcia RM, Leoni G, Naitana S, Rosati I, Succu S., Veiga–Lopez A. Induction of the presence of corpus luteum during superovulatory treatments enhances in vivo and in vitro blastocysts output in sheep. Theriogenol. [Internet]. 2005; 64:1392–1403. doi: https://doi.org/fds7zc

Cotterill M, Catt Sl, Picton HM. Characterisation of the cellular and molecular responses of ovine oocytes and their supporting somatic cells to pre–ovulatory levels of LH and FSH during in vitro maturation. Reprod. [Internet]. 2012; 144(2):195–207. doi: https://doi.org/kpcz

Knight PG, Satchell L, Glister C. Intra–ovarian roles of activins and inhibins. Mol. Cell Endocrinol. [Internet]. 2012; 359(1–2):53–65. doi: https://doi.org/fpxg4x

Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum. Reprod. Update. [Internet]. 2018; 24(1):1–14. doi: https://doi.org/gczkxr

Webb R, Garnsworthy PC, Campbell B, Hunter MG. Intra–ovarian regulation of follicular development and oocyte competence in farm animals. Theriogenol. [Internet]. 2007; 68 (Suppl.1):S22–29. doi: https://doi.org/ctd9v8

Fair T, Lonergan P. The role of progesterone in oocyte acquisition of developmental competence. Reprod. Domest. Anim. [Internet]. 2012; 47(Suppl 4):142–147. doi: https://doi.org/f36jgn

Menchaca A, Cuadro F, Dos Santos–Neto Pc, Bosolasco D, Barrera N, De Brun V, Crispo M. Oocyte developmental competence is improved by relatively greater circulating progesterone concentrations during preovulatory follicular growth. Anim. Reprod. Sci. 2018; 195:321–328. doi: https://doi.org/gd2hgh

Manjunatha BM, Gupta PS, Ravindra JP, Devaraj M, Ramesh HS, Nandi S. In vitro developmental competence of buffalo oocytes collected at various stages of the estrous cycle. Theriogenol. 2007; 68(6):882–88.

Rosen MP, Shen S, Dobson AT, Rinaudo PF, Mcculloch CE, Cedars MI. A quantitative assessment of follicle size on oocyte developmental competence. Fertil. Steril. [Internet]. 2008; 90(3):684–690. doi: https://doi.org/bns4wz

Ahmadi E, Nazari H, Hossini–Fahraji H. Low developmental competence and high tolerance to thermal stress of ovine oocytes in the warm compared with the cold season. Trop. Anim. Health Prod. [Internet]. 2019; 51(6):1611–1618. doi: https://doi.org/kpc2

Almeida FR, Mao J, Novak S, Cosgrove JR, Foxcroft GR. Effects of different patterns of feed restriction and insulin treatment during the luteal phase on reproductive, metabolic, and endocrine parameters in cyclic gilts. J. Anim. Sci. [Internet]. 2001; 79(1):200–212. doi: https://doi.org/kpc3

Armstrong DT. Effects of maternal age on oocyte developmental competence. Theriogenol. [Internet]. 2001; 55(6):1303–1322. doi: https://doi.org/btrmzc

Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchee MR, Mcconnell J. Maternal diet–induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. Plos One. [Internet]. 2010; 5(4):e10074. doi: https://doi.org/c6pqw7

Magata F, Shimizu T. Effect of lipopolysaccharide on developmental competence of oocytes. Reprod. Toxicol. [Internet]. 2017; 71:1–7. doi: https://doi.org/gbrqb4

Publicado
2023-08-17
Cómo citar
1.
Monasterio–Alemán E, Monasterio–Oquendo L, Zambrano–Vivas L, Arboleda–Caldera V, Osorio–Melendez C, Aranguren–Méndez J, Perea–Ganchou F, Hernández–Fonseca H. Efecto de la fase del ciclo estral en la maduración in vitro de ovocitos de gatas domésticas criadas en condiciones tropicales. Rev. Cient. FCV-LUZ [Internet]. 17 de agosto de 2023 [citado 10 de mayo de 2024];33(2):5. Disponible en: https://www.produccioncientificaluz.org/index.php/cientifica/article/view/40719
Sección
Medicina Veterinaria