Investigation of the effect of Arginine Silicate Inositol complex on the osseointegration level of titanium implants

Keywords: Arginine silicate inositol, slicone, arginine, osseointegration, bone implant connection

Abstract

Arginine silicate inositol complex is a material that increases bone mineral density and the amount of collagen in vascular tissue. The aim of this study was to investigate the effect of the Arginine silicate inositol complex, administered orally via gavage, on the osseointegration level of titanium implants in the tibiae of rats. The experimental animals were divided into four groups a control group, which had no implants or further treatment; a control–implant group, which had implants placed only in the tibia bone but no further treatment; an, Arginine silicate inositol – administered group, which had no implants but was administered Arginine silicate inositol; and an Arginine silicate inositol – implant group, which had both implants placed and Arginine silicate inositol administered. In serum samples obtained from the rats, associated with bone tissue; alkaline phosphatase, osteocalcin, calcium, phosphorus, associated with liver function; alanine aminotransferase, aspartate aminotransferase were analyzed using biochemical methods. Densitometric evaluations were performed on the jaw and femur bones. The titanium screws were removed along with the surrounding bone tissue for histological evaluation. Non Parametric Tests were used the data analysis: Mann–Whitney U (between two groups), Kruskal–Wallis and Dunn test (between four groups), bone–implant connection and thread fill levels did not show a statistically significant difference among the groups (P>0.05). The levels of calcium, alkaline phosphatase, osteocalcin, alanine aminotransferase, aspartate aminotransferase, femur bone mineral density and phosphorus also did not show a statistically significant difference among the groups (P>0.05). The differences in levels of jaw bone mineral density were statistically significant among the groups (P<0.05). Thus, it can be concluded that the Arginine silicate inositol complex may increase jaw bone mineral density, and bone–implant integration.

Downloads

Download data is not yet available.

References

Ozcan EC, Sokmen K, Karasu N, Bal A, Tanrisever M, Istek O, Kirtay M, Bozoglan A, Dundar S. Biomechanical evaluation of the osseointegration levels of implants placed simultaneously with Tibia, Femur, and Jaw allogeneic bone grafts. J. Craniofac. Surg. [Internet]. 2025; 36(1):323–327. doi: https://doi.org/pszs DOI: https://doi.org/10.1097/SCS.0000000000010517

Del Fabbro M, Testori T, Kekovic V, Goker F, Tumedei M, Wang HL. A systematic review of survival rates of osseointegrated implants in fully and partially edentulous patients following immediate loading. J. Clin. Med. [Internet]. 2019; 8(12):2142. doi: https://doi.org/gtv273 DOI: https://doi.org/10.3390/jcm8122142

Saha S, Roy S. Metallic dental implants wear mechanisms, materials, and manufacturing processes: A literature review. Materials [Internet]. 2023; 16(1):161. doi: https://doi.org/gshbmr DOI: https://doi.org/10.3390/ma16010161

Sartoretto SC, Shibli JA, Javid K, Cotrim K, Canabarro A, Louro RS, Lowenstein A, Mourão CF, Moraschini V. Comparing the long–term success rates of tooth preservation and dental implants: A critical review. J. Funct. Biomater. [Internet]. 2023; 14(3):142. doi: https://doi.org/qh9n DOI: https://doi.org/10.3390/jfb14030142

French D, Larjava H, Tallarico M. Retrospective study of 1087 anodized implants placed in private practice: Risk indicators associated with implant failure and relationship between bone levels and soft tissue health. Implant Dent. [Internet]. 2018; 27(2):177–187. doi: https://doi.org/qh9p DOI: https://doi.org/10.1097/ID.0000000000000743

Steigenga JT, al–Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long–term implant success. Implant Dent. [Internet]. 2003; 12(4):306–317. doi: https://doi.org/ch5qtp DOI: https://doi.org/10.1097/01.ID.0000091140.76130.A1

Nascimento MM. Potential uses of arginine in dentistry. Adv Dent Res. [Internet]. 2018; 29(1):98–103. doi: https://doi.org/gcvt5z DOI: https://doi.org/10.1177/0022034517735294

Goyal V, Damle S, Puranik MP, Nuvvula S, Kakanur M, Marwah N, Asokan S, Suprabha BS, Sreenivasan P, Wadgave U, Shyam S, Thakur D. Arginine: A new paradigm in preventive oral care. Int. J. Clin. Pediatr. Dent. [Internet]. 2023; 16(5):698–706. doi: https://doi.org/qh9q DOI: https://doi.org/10.5005/jp-journals-10005-2693

Fini M, Aldini NN, Canè V, Zaffe D, Giavaresi G, Rocca M, Guzzardella GA, Giardino R. Effects of essential amino acids and lactose on bony fractures and defects in rabbits: a preliminary histomorphometric study. Arch. Orthop. Trauma Surg. [Internet]. 1999; 119(1–2):39–45. doi: https://doi.org/ff9xr8 DOI: https://doi.org/10.1007/s004020050352

Torricelli P, Fini M, Giavaresi G, Giardino R, Gnudi S, Nicolini A, Carpi A. L–arginine and L–lysine stimulation on cultured human osteoblasts. Biomed. Pharmacother. [Internet]. 2002; 56(10):492–497. doi: https://doi.org/fqzgm8 DOI: https://doi.org/10.1016/S0753-3322(02)00287-1

Ojha L, Malik R, Mani V, Singh AK, Singh M. Influence of silicon supplementation on growth, immunity, antioxidant, hormonal profile and bone health biomarkers in pre–ruminant crossbred calves. Biol. Trace Elem. Res. [Internet]. 2025; 203(1):187–198. doi: https://doi.org/qh9r DOI: https://doi.org/10.1007/s12011-024-04178-5

Magnusson C, Ransjö M. Orthosilicic acid inhibits human osteoclast differentiation and bone resorption. PLoS One [Internet]. 2024; 19(10):e0312169. doi: https://doi.org/g8pj3v DOI: https://doi.org/10.1371/journal.pone.0312169

Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast–like cells in vitro. Bone [Internet]. 2003; 32(2):127–135. doi: https://doi.org/cr78rj DOI: https://doi.org/10.1016/S8756-3282(02)00950-X

Juturu V, Komorowski JR. Arginine silicate inositol complex and use thereof. United States Patent and Trademark Office. United States: Google Patents. 2009 [cited Jul 20, 2025]; US7576132B2. Available in: https://goo.su/9pk9A

López–Gambero AJ, Sanjuan C, Serrano–Castro PJ, Suárez J, Rodríguez de Fonseca F. The biomedical uses of inositols: A nutraceutical approach to metabolic dysfunction in aging and neurodegenerative diseases. Biomedicines [Internet]. 2020; 8(9):295. doi: https://doi.org/qh9s DOI: https://doi.org/10.3390/biomedicines8090295

Rondanelli M, Faliva MA, Peroni G, Gasparri C, Perna S, Riva A, Petrangolini G, Tartara A. Silicon: A neglected micronutrient essential for bone health. Exp. Biol. Med. (Maywood). [Internet]. 2021; 246(13):1500–1511. doi: https://doi.org/qh9v DOI: https://doi.org/10.1177/1535370221997072

Demir B, Cicek D, Orhan C, Er B, Erten F, Tuzcu M, Ozercan IH, Sahin N, Komorowski J, Ojalvo SP, Sylla S, Sahin K. Effects of a combination of arginine silicate inositol complex and a novel form of biotin on hair and nail growth in a rodent model. Biol. Trace Elem. Res. [Internet]. 2023; 201(2):751–765. doi: https://doi.org/qh9w DOI: https://doi.org/10.1007/s12011-022-03176-9

Proctor SD, Kelly SE, Vine DF, Russell JC. Metabolic effects of a novel silicate inositol complex of the nitric oxide precursor arginine in the obese insulin–resistant JCR:LA–cp rat. Metab. Clin. Exp. [Internet]. 2007; 56(10):1318–1325. doi: https://doi.org/fbr8xr DOI: https://doi.org/10.1016/j.metabol.2007.05.022

Dundar S, Bozoglan A, Bulmus O, Tekin S, Yildirim TT, Kirtay M, Toy VE, Gul M, Bozoglan MY. Effects of restraint stress and high–fat diet on osseointegration of titanium implants: an experimental study. Braz. Oral Res. [Internet]. 2020; 34:e008. doi: https://doi.org/n7q6 DOI: https://doi.org/10.1590/1807-3107bor-2020.vol34.0008

Colmanetti A, Pereira KF, Chopard RP. New bone formation in the female rabbit tibia. Braz. Oral Res. [Internet]. 2004; 18(3):224–227. doi: https://doi.org/c9j4mt DOI: https://doi.org/10.1590/S1806-83242004000300008

Bumgardner JD, Boring JG, Cooper RC Jr, Gao C, Givaruangsawat S, Gilbert JA, Misch CM, Steflik DE. Preliminary evaluation of a new dental implant design in canine models. Implant Dent. [Internet]. 2000; 9(3):252–260. doi: https://doi.org/dwb9qd DOI: https://doi.org/10.1097/00008505-200009030-00011

Özcan EC, Aydin MA, Dundar S, Tanrisever M, Bal A, Karasu N, Kirtay M. Biomechanical investigation of the osseointegration of titanium implants with different surfaces placed with allogeneic bone transfer. J. Craniofac. Surg. [Internet]. 2024; 35(7):2184–2188. doi: https://doi.org/pmwx DOI: https://doi.org/10.1097/SCS.0000000000010326

Istek O, Sokmen K, Ozcan EC, Tanrisever M, Gelic T, Can UK, Bozoglan A, Dundar S. Effects of local enemal matrix protein on osseointegration of different surface Titanium implants. Rev. Cientif. FCV–LUZ. [Internet]. 2025; 35(2):6. doi: https://doi.org/qh92 DOI: https://doi.org/10.52973/rcfcv-e35625

Bingul MB, Gul M, Dundar S, Bozoglan A, Kirtay M, Ozupek MF, Ozcan EC, Habek O, Tasdemir I. Effects of the application local Zoledronic Acid on different dental implants in rats on osseointegration. Drug Des. Dev. Ther. [Internet]. 2024; 18:2249–2256. doi: https://doi.org/pmww DOI: https://doi.org/10.2147/DDDT.S459125

Ayukawa Y, Okamura A, Koyano K. Simvastatin promotes osteogenesis around titanium implants. Clin. Oral Implants Res. [Internet]. 2004; 15(3):346–350. doi: https://doi.org/dp4pw7 DOI: https://doi.org/10.1046/j.1600-0501.2003.01015.x

Ivanovski S, Lee RSB, Fernandez–Medina T, Pinto N, Andrade C, Quirynen M. Impact of autologous platelet concentrates on the osseointegration of dental implants. Periodontol. 2025; 97(1):271–286. https://doi.org/qh93 DOI: https://doi.org/10.1111/prd.12563

Takechi M, Tatehara S, Satomura K, Fujisawa K, Nagayama M. Effect of FGF–2 and melatonin on implant bone healing: a histomorphometric study. J. Mater. Sci.: Mater. Med. [Internet]. 2008; 19(8):2949–2952. doi: https://doi.org/fws83x DOI: https://doi.org/10.1007/s10856-008-3416-3

Sahin K, Onderci M, Sahin N, Balci TA, Gursu MF, Juturu V, Kucuk O. Dietary arginine silicate inositol complex improves bone mineralization in quail. Poult. Sci. [Internet]. 2006; 85(3):486–492. doi: https://doi.org/qh94 DOI: https://doi.org/10.1093/ps/85.3.486

Yaman F, Acikan I, Dundar S, Simsek S, Gul M, Ozercan IH, Komorowski J, Sahin K. Dietary arginine silicate inositol complex increased bone healing: histologic and histomorphometric study. Drug Des. Dev. Ther. [Internet]. 2016; 10:2081–2086. doi: https://doi.org/f9h9m5 DOI: https://doi.org/10.2147/DDDT.S109271

Seaborn CD, Nielsen FH. Dietary silicon and arginine affect mineral element composition of rat femur and vertebra. Biol. Trace Elem. Res. [Internet]. 2002; 89(3):239–250. doi: https://doi.org/bzk4rh DOI: https://doi.org/10.1385/BTER:89:3:239

Arthur–Ataam J, Bideaux P, Charrabi A, Sicard P, Fromy B, Liu K, Eddahibi S, Pasqualin C, Jouy N, Richard S, Virsolvy A. Dietary supplementation with silicon–enriched spirulina improves arterial remodeling and function in hypertensive rats. Nutrients [Internet]. 2019; 11(11):2574. doi: https://doi.org/qh95 DOI: https://doi.org/10.3390/nu11112574

Dundar S, Eltas A, Hakki SS, Malkoc S, Uslu MO, Tuzcu M, Komorowski J, Ozercan IH, Akdemir F, Sahin K. Dietary arginine silicate inositol complex inhibits periodontal tissue loss in rats with ligature–induced periodontitis. Drug Des. Dev. Ther. [Internet]. 2016; 10:3771–3778. doi: https://doi.org/qh96 DOI: https://doi.org/10.2147/DDDT.S115088

Onderci M, Sahin N, Sahin K, Balci TA, Gursu MF, Juturu V, Kucuk O. Dietary arginine silicate inositol complex during the late laying period of quail at different environmental temperatures. Br. Poult. Sci. [Internet]. 2006; 47(2):209–215. doi: https://doi.org/cp3rj8 DOI: https://doi.org/10.1080/00071660600611052

Küçükbay F, Yazlak H, Sahin N, Akdemir F, Orhan C, Juturu V, Sahin K. Effects of dietary arginine silicate inositol complex on mineral status in rainbow trout (Oncorhynchus mykiss). Aquac. nutr. [Internet]. 2008; 14(3):257–262. doi: https://doi.org/dw82hw DOI: https://doi.org/10.1111/j.1365-2095.2007.00526.x

Yilmaz N, Bayram M, Erbåğci AB, Kilinçer MS. Diagnostic value of biochemical markers of bone turnover and postmenopausal osteoporosis. Clin. Chem. Lab. Med. [Internet]. 1999; 37(2):137–143. doi: https://doi.org/c65zh3 DOI: https://doi.org/10.1515/CCLM.1999.025

Sahin K, Perez Ojalvo S, Akdemir F, Orhan C, Tuzcu M, Sahin N, Ozercan IH, Sylla S, Koca SS, Yilmaz I, Komorowski JR. Effect of inositol – stabilized arginine silicate on arthritis in a rat model. Food Chem. Toxicol. [Internet]. 2019; 125:242–251. doi: https://doi.org/qh97 DOI: https://doi.org/10.1016/j.fct.2019.01.005

Bakir BO, Oztezcan S, Saka M, Karalti I, Ozkan F, Ok MA. The effects of enteral supplementation of glutamine and arginine in lipopolysaccharide (LPS) induced sepsis. Prog. Nutrit. [Internet]. 2019 [cited Jul 20, 2025]; 21(1–S):244–250. Available in: https://goo.su/MrPCbiq

Published
2025-12-21
How to Cite
1.
Gezer Ataş A, Talo Yildirim T, Dündar S, Bozoğlan A, Şahin K. Investigation of the effect of Arginine Silicate Inositol complex on the osseointegration level of titanium implants. Rev. Cient. FCV-LUZ [Internet]. 2025Dec.21 [cited 2025Dec.22];36(1):8. Available from: http://www.produccioncientificaluz.org/index.php/cientifica/article/view/44983
Section
Veterinary Medicine