Investigación del efecto del complejo de silicato de arginina inositol en el nivel de oseointegración de implantes de titanio

Palabras clave: Silicato de arginina inositol, slicone, arginina, osteointegración, conexión de implante óseo

Resumen

El complejo de silicato de arginina inositol es un material que aumenta la densidad mineral ósea y la cantidad de colágeno en el tejido vascular. El objetivo de este estudio fue investigar el efecto del complejo silicato de arginina inositol, administrado por vía oral mediante sonda, en el nivel de osteointegración de implantes de titanio en las tibias de ratas. Los animales experimentales se dividieron en cuatro grupos: un grupo de control, que no tenía implantes ni tratamiento adicional; un grupo de control con implantes, que tenía implantes colocados solo en el hueso de la tibia pero no tratamiento adicional; un grupo administrado con silicato de arginina inositol, que no tenía implantes pero se le administró silicato de arginina inositol; y un grupo con implantes de silicato de arginina inositol, que tenía implantes colocados y silicato de arginina inositol administrado. En muestras de suero obtenidas de las ratas, asociado con el tejido óseo; se analizaron la fosfatasa alcalina, la osteocalcina, el calcio, el fósforo, asociado con la función hepática; la alanina aminotransferasa, la aspartato aminotransferasa y utilizando métodos bioquímicos. Se realizaron evaluaciones densitométricas en los huesos maxilar y fémur. Los tornillos de titanio se retiraron junto con el tejido óseo circundante para la evaluación histológica. Para el análisis de datos se utilizaron pruebas no paramétricas: la prueba U de Mann–Whitney (entre dos grupos), la prueba de Kruskal–Wallis y la prueba de Dunn (entre cuatro grupos). La conexión hueso– implante y los niveles de relleno de la rosca no mostraron una diferencia estadísticamente significativa entre los grupos (P>0,05). Los niveles de calcio, fosfatasa alcalina, osteocalcina, alanina aminotransferasa, aspartato aminotransferasa, de densidad mineral ósea del fémur, y fósforo tampoco mostraron una diferencia estadísticamente significativa entre los grupos (P>0,05). Las diferencias en los niveles de densidad mineral ósea mandibular fueron estadísticamente significativas entre los grupos (P<0,05). Por lo tanto, se puede concluir que el complejo silicato de arginina inositol puede aumentar la densidad mineral ósea de la mandíbula y la integración hueso–implante.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ozcan EC, Sokmen K, Karasu N, Bal A, Tanrisever M, Istek O, Kirtay M, Bozoglan A, Dundar S. Biomechanical evaluation of the osseointegration levels of implants placed simultaneously with Tibia, Femur, and Jaw allogeneic bone grafts. J. Craniofac. Surg. [Internet]. 2025; 36(1):323–327. doi: https://doi.org/pszs DOI: https://doi.org/10.1097/SCS.0000000000010517

Del Fabbro M, Testori T, Kekovic V, Goker F, Tumedei M, Wang HL. A systematic review of survival rates of osseointegrated implants in fully and partially edentulous patients following immediate loading. J. Clin. Med. [Internet]. 2019; 8(12):2142. doi: https://doi.org/gtv273 DOI: https://doi.org/10.3390/jcm8122142

Saha S, Roy S. Metallic dental implants wear mechanisms, materials, and manufacturing processes: A literature review. Materials [Internet]. 2023; 16(1):161. doi: https://doi.org/gshbmr DOI: https://doi.org/10.3390/ma16010161

Sartoretto SC, Shibli JA, Javid K, Cotrim K, Canabarro A, Louro RS, Lowenstein A, Mourão CF, Moraschini V. Comparing the long–term success rates of tooth preservation and dental implants: A critical review. J. Funct. Biomater. [Internet]. 2023; 14(3):142. doi: https://doi.org/qh9n DOI: https://doi.org/10.3390/jfb14030142

French D, Larjava H, Tallarico M. Retrospective study of 1087 anodized implants placed in private practice: Risk indicators associated with implant failure and relationship between bone levels and soft tissue health. Implant Dent. [Internet]. 2018; 27(2):177–187. doi: https://doi.org/qh9p DOI: https://doi.org/10.1097/ID.0000000000000743

Steigenga JT, al–Shammari KF, Nociti FH, Misch CE, Wang HL. Dental implant design and its relationship to long–term implant success. Implant Dent. [Internet]. 2003; 12(4):306–317. doi: https://doi.org/ch5qtp DOI: https://doi.org/10.1097/01.ID.0000091140.76130.A1

Nascimento MM. Potential uses of arginine in dentistry. Adv Dent Res. [Internet]. 2018; 29(1):98–103. doi: https://doi.org/gcvt5z DOI: https://doi.org/10.1177/0022034517735294

Goyal V, Damle S, Puranik MP, Nuvvula S, Kakanur M, Marwah N, Asokan S, Suprabha BS, Sreenivasan P, Wadgave U, Shyam S, Thakur D. Arginine: A new paradigm in preventive oral care. Int. J. Clin. Pediatr. Dent. [Internet]. 2023; 16(5):698–706. doi: https://doi.org/qh9q DOI: https://doi.org/10.5005/jp-journals-10005-2693

Fini M, Aldini NN, Canè V, Zaffe D, Giavaresi G, Rocca M, Guzzardella GA, Giardino R. Effects of essential amino acids and lactose on bony fractures and defects in rabbits: a preliminary histomorphometric study. Arch. Orthop. Trauma Surg. [Internet]. 1999; 119(1–2):39–45. doi: https://doi.org/ff9xr8 DOI: https://doi.org/10.1007/s004020050352

Torricelli P, Fini M, Giavaresi G, Giardino R, Gnudi S, Nicolini A, Carpi A. L–arginine and L–lysine stimulation on cultured human osteoblasts. Biomed. Pharmacother. [Internet]. 2002; 56(10):492–497. doi: https://doi.org/fqzgm8 DOI: https://doi.org/10.1016/S0753-3322(02)00287-1

Ojha L, Malik R, Mani V, Singh AK, Singh M. Influence of silicon supplementation on growth, immunity, antioxidant, hormonal profile and bone health biomarkers in pre–ruminant crossbred calves. Biol. Trace Elem. Res. [Internet]. 2025; 203(1):187–198. doi: https://doi.org/qh9r DOI: https://doi.org/10.1007/s12011-024-04178-5

Magnusson C, Ransjö M. Orthosilicic acid inhibits human osteoclast differentiation and bone resorption. PLoS One [Internet]. 2024; 19(10):e0312169. doi: https://doi.org/g8pj3v DOI: https://doi.org/10.1371/journal.pone.0312169

Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, Powell JJ, Hampson GN. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast–like cells in vitro. Bone [Internet]. 2003; 32(2):127–135. doi: https://doi.org/cr78rj DOI: https://doi.org/10.1016/S8756-3282(02)00950-X

Juturu V, Komorowski JR. Arginine silicate inositol complex and use thereof. United States Patent and Trademark Office. United States: Google Patents. 2009 [cited Jul 20, 2025]; US7576132B2. Available in: https://goo.su/9pk9A

López–Gambero AJ, Sanjuan C, Serrano–Castro PJ, Suárez J, Rodríguez de Fonseca F. The biomedical uses of inositols: A nutraceutical approach to metabolic dysfunction in aging and neurodegenerative diseases. Biomedicines [Internet]. 2020; 8(9):295. doi: https://doi.org/qh9s DOI: https://doi.org/10.3390/biomedicines8090295

Rondanelli M, Faliva MA, Peroni G, Gasparri C, Perna S, Riva A, Petrangolini G, Tartara A. Silicon: A neglected micronutrient essential for bone health. Exp. Biol. Med. (Maywood). [Internet]. 2021; 246(13):1500–1511. doi: https://doi.org/qh9v DOI: https://doi.org/10.1177/1535370221997072

Demir B, Cicek D, Orhan C, Er B, Erten F, Tuzcu M, Ozercan IH, Sahin N, Komorowski J, Ojalvo SP, Sylla S, Sahin K. Effects of a combination of arginine silicate inositol complex and a novel form of biotin on hair and nail growth in a rodent model. Biol. Trace Elem. Res. [Internet]. 2023; 201(2):751–765. doi: https://doi.org/qh9w DOI: https://doi.org/10.1007/s12011-022-03176-9

Proctor SD, Kelly SE, Vine DF, Russell JC. Metabolic effects of a novel silicate inositol complex of the nitric oxide precursor arginine in the obese insulin–resistant JCR:LA–cp rat. Metab. Clin. Exp. [Internet]. 2007; 56(10):1318–1325. doi: https://doi.org/fbr8xr DOI: https://doi.org/10.1016/j.metabol.2007.05.022

Dundar S, Bozoglan A, Bulmus O, Tekin S, Yildirim TT, Kirtay M, Toy VE, Gul M, Bozoglan MY. Effects of restraint stress and high–fat diet on osseointegration of titanium implants: an experimental study. Braz. Oral Res. [Internet]. 2020; 34:e008. doi: https://doi.org/n7q6 DOI: https://doi.org/10.1590/1807-3107bor-2020.vol34.0008

Colmanetti A, Pereira KF, Chopard RP. New bone formation in the female rabbit tibia. Braz. Oral Res. [Internet]. 2004; 18(3):224–227. doi: https://doi.org/c9j4mt DOI: https://doi.org/10.1590/S1806-83242004000300008

Bumgardner JD, Boring JG, Cooper RC Jr, Gao C, Givaruangsawat S, Gilbert JA, Misch CM, Steflik DE. Preliminary evaluation of a new dental implant design in canine models. Implant Dent. [Internet]. 2000; 9(3):252–260. doi: https://doi.org/dwb9qd DOI: https://doi.org/10.1097/00008505-200009030-00011

Özcan EC, Aydin MA, Dundar S, Tanrisever M, Bal A, Karasu N, Kirtay M. Biomechanical investigation of the osseointegration of titanium implants with different surfaces placed with allogeneic bone transfer. J. Craniofac. Surg. [Internet]. 2024; 35(7):2184–2188. doi: https://doi.org/pmwx DOI: https://doi.org/10.1097/SCS.0000000000010326

Istek O, Sokmen K, Ozcan EC, Tanrisever M, Gelic T, Can UK, Bozoglan A, Dundar S. Effects of local enemal matrix protein on osseointegration of different surface Titanium implants. Rev. Cientif. FCV–LUZ. [Internet]. 2025; 35(2):6. doi: https://doi.org/qh92 DOI: https://doi.org/10.52973/rcfcv-e35625

Bingul MB, Gul M, Dundar S, Bozoglan A, Kirtay M, Ozupek MF, Ozcan EC, Habek O, Tasdemir I. Effects of the application local Zoledronic Acid on different dental implants in rats on osseointegration. Drug Des. Dev. Ther. [Internet]. 2024; 18:2249–2256. doi: https://doi.org/pmww DOI: https://doi.org/10.2147/DDDT.S459125

Ayukawa Y, Okamura A, Koyano K. Simvastatin promotes osteogenesis around titanium implants. Clin. Oral Implants Res. [Internet]. 2004; 15(3):346–350. doi: https://doi.org/dp4pw7 DOI: https://doi.org/10.1046/j.1600-0501.2003.01015.x

Ivanovski S, Lee RSB, Fernandez–Medina T, Pinto N, Andrade C, Quirynen M. Impact of autologous platelet concentrates on the osseointegration of dental implants. Periodontol. 2025; 97(1):271–286. https://doi.org/qh93 DOI: https://doi.org/10.1111/prd.12563

Takechi M, Tatehara S, Satomura K, Fujisawa K, Nagayama M. Effect of FGF–2 and melatonin on implant bone healing: a histomorphometric study. J. Mater. Sci.: Mater. Med. [Internet]. 2008; 19(8):2949–2952. doi: https://doi.org/fws83x DOI: https://doi.org/10.1007/s10856-008-3416-3

Sahin K, Onderci M, Sahin N, Balci TA, Gursu MF, Juturu V, Kucuk O. Dietary arginine silicate inositol complex improves bone mineralization in quail. Poult. Sci. [Internet]. 2006; 85(3):486–492. doi: https://doi.org/qh94 DOI: https://doi.org/10.1093/ps/85.3.486

Yaman F, Acikan I, Dundar S, Simsek S, Gul M, Ozercan IH, Komorowski J, Sahin K. Dietary arginine silicate inositol complex increased bone healing: histologic and histomorphometric study. Drug Des. Dev. Ther. [Internet]. 2016; 10:2081–2086. doi: https://doi.org/f9h9m5 DOI: https://doi.org/10.2147/DDDT.S109271

Seaborn CD, Nielsen FH. Dietary silicon and arginine affect mineral element composition of rat femur and vertebra. Biol. Trace Elem. Res. [Internet]. 2002; 89(3):239–250. doi: https://doi.org/bzk4rh DOI: https://doi.org/10.1385/BTER:89:3:239

Arthur–Ataam J, Bideaux P, Charrabi A, Sicard P, Fromy B, Liu K, Eddahibi S, Pasqualin C, Jouy N, Richard S, Virsolvy A. Dietary supplementation with silicon–enriched spirulina improves arterial remodeling and function in hypertensive rats. Nutrients [Internet]. 2019; 11(11):2574. doi: https://doi.org/qh95 DOI: https://doi.org/10.3390/nu11112574

Dundar S, Eltas A, Hakki SS, Malkoc S, Uslu MO, Tuzcu M, Komorowski J, Ozercan IH, Akdemir F, Sahin K. Dietary arginine silicate inositol complex inhibits periodontal tissue loss in rats with ligature–induced periodontitis. Drug Des. Dev. Ther. [Internet]. 2016; 10:3771–3778. doi: https://doi.org/qh96 DOI: https://doi.org/10.2147/DDDT.S115088

Onderci M, Sahin N, Sahin K, Balci TA, Gursu MF, Juturu V, Kucuk O. Dietary arginine silicate inositol complex during the late laying period of quail at different environmental temperatures. Br. Poult. Sci. [Internet]. 2006; 47(2):209–215. doi: https://doi.org/cp3rj8 DOI: https://doi.org/10.1080/00071660600611052

Küçükbay F, Yazlak H, Sahin N, Akdemir F, Orhan C, Juturu V, Sahin K. Effects of dietary arginine silicate inositol complex on mineral status in rainbow trout (Oncorhynchus mykiss). Aquac. nutr. [Internet]. 2008; 14(3):257–262. doi: https://doi.org/dw82hw DOI: https://doi.org/10.1111/j.1365-2095.2007.00526.x

Yilmaz N, Bayram M, Erbåğci AB, Kilinçer MS. Diagnostic value of biochemical markers of bone turnover and postmenopausal osteoporosis. Clin. Chem. Lab. Med. [Internet]. 1999; 37(2):137–143. doi: https://doi.org/c65zh3 DOI: https://doi.org/10.1515/CCLM.1999.025

Sahin K, Perez Ojalvo S, Akdemir F, Orhan C, Tuzcu M, Sahin N, Ozercan IH, Sylla S, Koca SS, Yilmaz I, Komorowski JR. Effect of inositol – stabilized arginine silicate on arthritis in a rat model. Food Chem. Toxicol. [Internet]. 2019; 125:242–251. doi: https://doi.org/qh97 DOI: https://doi.org/10.1016/j.fct.2019.01.005

Bakir BO, Oztezcan S, Saka M, Karalti I, Ozkan F, Ok MA. The effects of enteral supplementation of glutamine and arginine in lipopolysaccharide (LPS) induced sepsis. Prog. Nutrit. [Internet]. 2019 [cited Jul 20, 2025]; 21(1–S):244–250. Available in: https://goo.su/MrPCbiq

Publicado
2025-12-21
Cómo citar
1.
Gezer Ataş A, Talo Yildirim T, Dündar S, Bozoğlan A, Şahin K. Investigación del efecto del complejo de silicato de arginina inositol en el nivel de oseointegración de implantes de titanio. Rev. Cient. FCV-LUZ [Internet]. 21 de diciembre de 2025 [citado 22 de diciembre de 2025];36(1):8. Disponible en: http://www.produccioncientificaluz.org/index.php/cientifica/article/view/44983
Sección
Medicina Veterinaria