Marine collagen xenografts accelerate tissue repair in open canine skin wounds: clinical and histopathological evidence

Keywords: Xenograft, marine collagen, wound healing, histopathology, regenerative Veterinary Medicine

Abstract

The use of marine collagen xenografts represents an innovative therapeutic alternative in regenerative veterinary medicine due to their ability to accelerate tissue repair and improve the structural quality of cutaneous wound healing. This biomaterial of ichthyologic origin exhibits high biological compatibility, low immunogenic risk, and strong similarity to mammalian dermal collagen. The present study evaluated its efficacy in the regeneration of open skin wounds in dogs through clinical, photographic, and histopathological analyses, in comparison with a conventional treatment using a healing cream. Five mixed–breed dogs with lesions ranging from 2.4 to 11.07 cm² were used. Three dogs were treated with dehydrated and sterilized marine collagen xenografts applied using the MAHVET technique, and two received daily antiseptic cleaning and healing cream. Clinical follow–up and morphometric measurements, obtained with a high–precision vernier caliper, were performed weekly for six weeks. Dogs treated with xenografts exhibited wound area reductions greater than 98% from the first weeks, achieving near–complete closure (99.27–99.82%) within three to four weeks, while those under conventional treatment reached reductions of 97.05–98.81% by the sixth week. Histopathological analysis revealed an intact epidermis, minimal inflammation, mature fibroblasts, and compact collagen fibers arranged in parallel in the xenograft group, in contrast to persistent inflammation and immature collagen in the control group. The results demonstrate that marine collagen xenografts promote wound closure, optimize tissue organization and maturation, and represent a biocompatible and effective therapeutic alternative for the healing of open cutaneous wounds.

Downloads

Download data is not yet available.

References

Aisa J, Mark P. Local wound management: a review of modern techniques and products. Vet. Dermatol. [Internet]. 2022; 33:463–478. doi: https://doi.org/qfvv DOI: https://doi.org/10.1111/vde.13104

Cruz MA, Araujo TA, Avanzi IR, Parisi JR. Collagen from marine sources and skin wound healing in animal experimental studies: a systematic review. Mar. Biotechnol. [Internet]. 2021; 23:1–11. doi: https://doi.org/gjh8dv DOI: https://doi.org/10.1007/s10126-020-10011-6

Oslan SNH, Li CX, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Extraction and characterization of bioactive fish by– product collagen as a promising potential wound healing agent in pharmaceutical applications. Int. J. Food Sci. [Internet]. 2022; 2022:9437878. doi: https://doi.org/qfvw DOI: https://doi.org/10.1155/2022/9437878

Zhang Z, Wang J, Ding Y, Dai X, Li Y. Oral administration of marine collagen peptides from chum salmon skin enhances cutaneous wound healing and angiogenesis in rats. J. Sci. Food. Agric. [Internet]. 2011; 91:2173–2179. doi: https://doi.org/dcqj7j DOI: https://doi.org/10.1002/jsfa.4435

Mauer ES, Maxwell EA, Cocca CJ, Ganjei J, Spector D. Acellular fish skin grafts for the management of wounds in dogs and cats: 17 cases (2019–2021). Am. J. Vet. Res. [Internet]. 2022; 83(5):1–7. doi: https://doi.org/qfvx DOI: https://doi.org/10.2460/ajvr.21.09.0140

Alam K, Jeffery SL. Acellular fish skin grafts for management of split–thickness donor sites and partial–thickness burns: a case series. Mil. Med. [Internet]. 2019; 184(Suppl. 1):16–20. doi: https://doi.org/gq6znr DOI: https://doi.org/10.1093/milmed/usy280

Chen J, Gao K, Liu S, Wang S, Elango J, Bao B, Dong J, Liu N, Wu W. Fish collagen surgical compress repairing characteristics on wound healing process in vivo. Mar Drugs. [Internet]. 2019; 17(1):33. doi: https://doi.org/gjg8tm DOI: https://doi.org/10.3390/md17010033

Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S. Marine collagen as a promising biomaterial for biomedical applications. Mar Drugs. [Internet]. 2019; 17(8):467. doi: https://doi.org/ghhwdm DOI: https://doi.org/10.3390/md17080467

Huppes RR, de Nardi AB, Pazzini JM, Castro JLC, editores. Cirugía reconstructiva en perros y gatos [Internet]. Barcelona (Spain): Multimédica Ediciones Veterinarias; 2024. 328 p. Available in: https://goo.su/m6BtT4

Murrell JC. La medicación preanestésica y la sedación. En: Duke–Novakovski T, de Vries M, Seymour C, editores. Manual de anestesia y analgesia de pequeños animales [Internet]. 2ª ed. Barcelona (Spain): Edra; 2022. 288 p. Available in: https://goo.su/sfuAn

Lujano–Guzmán AC, Caicho–Caicedo O. Validation of the instillation technique Advanced wound management in veterinary medicine (MAHVET). Salud Cienc. Tecnol. [Internet]. 2022; 2:71. doi: https://doi.org/qfvz DOI: https://doi.org/10.56294/saludcyt202271

La Mónica F, Cámpora S, Ghersi G. Collagen–based scaffolds for the treatment of chronic skin wounds. Gels [Internet]. 2024;10(2):137. doi: https://doi.org/qfv2 DOI: https://doi.org/10.3390/gels10020137

Zhang Q, Dou M, Su X, Yu Z, Wei B, Zhu L, Zhang J, Wang H. Collagen–based biomaterials: recent advances on regulating cell migration and correlated biomedical applications. Collagen & Leather. 2025; 7:17. doi: https://doi.org/qfv3 DOI: https://doi.org/10.1186/s42825-025-00197-7

Holzer–Geissler JCJ, Schwingenschuh S, Zacharias M, Einsiedler J, Kainz S, Reisenegger P, Holecek C, Hofmann E, Wolff–Winiski B, Fahrngruber H, Birngruber T, Kamolz LP, Kotzbeck P. The impact of prolonged inflammation on wound healing. Biomedicines [Internet]. 2022; 10(4):856 doi: https://doi.org/qfv5 DOI: https://doi.org/10.3390/biomedicines10040856

Zhou S, Xie M, Su J, Cai B, Li J, Zhang K. New insights into balancing wound healing and scarless repair. J. Tissue Eng. Regen. Med. [Internet]. 2023; 17(5):e2008–e2025. doi: https://doi.org/g7g3hm

Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing. Front Immunol. [Internet]. 2024; online ahead of print. doi: https://doi.org/g8qdxd DOI: https://doi.org/10.3389/fimmu.2024.1395479

Agivale SM, Shende HU, Mehendale SV, Rahul RG, Salunke VM, Ulemale AH. Use of tilapia fish (Oreochromis niloticus) skin graft for chronic wound management in six dogs. J. Entomol. Zool. Stud. [Internet]. 2024; 9(4h):1601. doi: https://doi.org/qfv6 DOI: https://doi.org/10.22271/veterinary.2024.v9.i4h.1601

Melotti L, Martinello T, Perazzi A, Iacopetti I, Ferrario C, Sugni M, Sacchetto R, Patruno M. A prototype skin substitute made of recycled marine collagen improves the skin regeneration of sheep. Animals [Internet]. 2021; 11(5):1219. doi: https://doi.org/qfv8 DOI: https://doi.org/10.3390/ani11051219

Galarza–Pesantez RL. Uso de la piel de tilapia (Oreochromis spp.) como tratamiento en heridas expuestas con pérdida de continuidad en caninos (Canis lupus familiaris) [master’s thesis on the Internet]. Cuenca (Ecuador): Universidad de Cuenca, 2022. 172 p. Available in: https://goo.su/jVrcG

Choi C, Linder T, Kirby A, Rosenkrantz W, Mueller M. Use of a tilapia skin xenograft for management of a large bite wound in a dog. Can. Vet. J. [Internet]. 2021 [cited June 23, 2025]; 62(10):1071–1076. Available in: https://goo.su/eZ6GWS0

Wu S, Yang L, Chen J. Preparation and characterization of tilapia collagen–thermoplastic polyurethane composite nanofiber membranes. Mar. Drugs [Internet]. 2022; 20(7):437. doi: https://doi.org/gsn63j DOI: https://doi.org/10.3390/md20070437

Ivana J, Smith L, Rogers P, Ahmed N, Brown T. Evaluation of the efficacy of fish skin grafts as wound dressings for chronic and complex wounds. J. Wound Care Res. [Internet]. 2025 [cited June 23, 2025]; 18(2):145–153. Available in: https://goo.su/Zi3igXt

Daidone C, Rossi M, Bianchi L, Ferrara P. The role of fish skin xenografts in healing complex wounds: a brief case report. J. Clin. Case Rep. Med. Imag. Health Sci. [Internet]. 2025 [cited May 29, 2025]; 9(1):23–27. Available in: https://goo.su/zRRUAy

El–Sayed A, El–Sherif M, El–Komy H, El–Kilany S, El–Dakhly K, El–Tantawy M. Evaluation of tilapia (Oreochromis niloticus) fish skin as a biological dressing for full–thickness metacarpal wounds in donkeys (Equus asinus). BMC Vet. Res. [Internet]. 2020; 16(1):178. doi: https://doi.org/qfv9 DOI: https://doi.org/10.1186/s12917-020-02693-w

Lima–Júnior EM, Picollo NS, Miranda MJB, Silva–Júnior FR, Ribeiro WL, Alves APNN, Pereira TMC, Soares MFAA, Moreira JR, Costa BA, Moraes Filho MO. Innovative treatment using tilapia skin as a xenograft for partial thickness burns in humans: a phase II randomized controlled trial. Medicina [Internet]. 2022; 58(7):912. Available in: https://doi.org/gsmf74

Shi S, Wang L, Song C, Yao L, Xiao J. Recent progresses of collagen dressings for chronic skin wound healing. J. Laser Health Sci Eng. [Internet]. 2023;12(2):31. doi: https://doi.org/g93xmc DOI: https://doi.org/10.1186/s42825-023-00136-4

Zhang Y, Wang Y, Li Y, Yang Y, Jin M, Lin X, Zhuang Z, Guo K, Zhang T, Tan W. Application of collagen–based hydrogel in skin wound healing. Gels [Internet]. 2023; 9(3):185. doi: https://doi.org/qfwd DOI: https://doi.org/10.3390/gels9030185

Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N, Khammari D, Banala N, Kumar BP, Repka MA. Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements. Cells [Internet]. 2022; 11(15):2439. doi: https://doi.org/gtxz27 DOI: https://doi.org/10.3390/cells11152439

Mathew–Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering [Internet]. 2021; 8(5):63. doi: https://doi.org/gk73v6 DOI: https://doi.org/10.3390/bioengineering8050063

Yeung DA. The role of collagen–based biomaterials in chronic wounds. Bioengineering. [Internet]. 2021; 8(1):8. doi: https://doi.org/gp5gm5 DOI: https://doi.org/10.3390/bioengineering8010008

Published
2025-12-03
How to Cite
1.
Loor–Morales WA, Lascano–Pionce MN, Rincón–Acosta F, López–Rauschemberg M. Marine collagen xenografts accelerate tissue repair in open canine skin wounds: clinical and histopathological evidence. Rev. Cient. FCV-LUZ [Internet]. 2025Dec.3 [cited 2025Dec.5];36(1):9. Available from: http://www.produccioncientificaluz.org/index.php/cientifica/article/view/44827
Section
Veterinary Medicine