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Abstract 
Lie' s theory in lts current formulation is linear, local and canonical. As such, it Is inapplicable io a 

grOMng number of nonHnear, nonlocal and non canonical systems in various ftelds . In th1s paper we 
review and develop a generalization of Lie's theory proposed by R.M. Santilli in 1978 then at Harvard 
Unlversity and today called Lie-Santilli isotopi.c theory or lsotheory for short. The la tier theory is based on 
the so-called isotopieswhích are n onlinear, nonlocal and noncanonical maps ofany given linear, local and 
canon lcal theory capable of reconstructing linearity, locality and canoníclty in certain generalized s paces 
and fields. The emerging Lie-Santilli isotheory 15 remarkable because it presever the ahstract axioms of 
Lie's theory whUe belng applicable to nonllnear, nonlocal and noncanontcal sys tems. We review the 
foundation s of the Lie-SantUlI isoalgebras and tsogroups; introdu ce seemingly n ovel advances in thelr 
structure and interconnections; and show that he Lie-SantUlI Isotheory provides the invariance of all 
inllnttely possible, signatu re-preserving. nonlinear, nonlocal and noncanon ical deforma tions of 
conven tional Euclidean, Minkowskian or Riemannian invariants. We ftnally indicate a number of 
appUcations and identify rather intriguing open mathematica l problems. 

Kew words: Isotopies, Lie-Santilli isoalgebras , isogroups and isorepresenlatlon s. 

Fundamentos de la Teoría Isotópica de Lie-Santilli 

Resumen 
En su formulación actua l, la teoría de Lie es lineal , local y canónica. Como tal, no es aplicable a un 

creciente número de sistemas no lineales. no locales y no canónicos en varios campos . En este trabajO 
revisamos y desarrollamos una generalización de la teoría de Lie propuesta por R.M. Santillí en 1978, 
quien en esos momen tos se encontraba en la Universidad de Harvard. Hoy en día esta teoría se denomina 
Teoría Isotópica de Lie-SantiUi o Isoteoría.. Esta teoría está basada en las llamadas isotopías que son 
representaciones no lineales, no locales y no canónicas de una teoría lineal . local y canón ica cualquiera 
que sea capaz de reconstruir linealidad, localidad y canonicidad en ciertos es pacios y campos 
gen eralizados. La emergente lsoteoría de Lie-SantilJi es notable porque preserva los axiomas abstractos de 
la Teoría de Lie, siendo al mismo tiempo aplicable a sistemas alineales, no locales y no canónicos. 
Revisamos los fundamentos de las lsoálgebras e isogrupos de Líe-Santilli; introducimos avances de 
estructura e in terconexiones aparentemen te originales, y demostramos que la Isoteoria de Lie-SantUli 
proporciona la no varianza de todas las infinitamente posibles deformaciones -alineales, no locales, no 
canónicas y que preservan su configuración- de la s Invariantes Euclideana s , M1nk.ovtanas o 
Riemaníanas. Finalmente , s eñalamos un número de a plicaciones e identificamos algunos problemas 
TIlatemátlcos ab iertos b stante Interesantes. 

Palabras clave: Isotopías , isoálgebras, isogrupos. isorrepresentaclones de Lie-8antUli . 
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l. lntroduction 

1.A. Limitatiom of Lie's theory. As it is well k,nown, 

Lie's theory has permitted outstandmg achlevemenls in 

various disciplines. Nevertheless, in its current 

conceplion [301 and reallzation tsee, e.g., [15D, Ue's theory 

is Unear, locaJ-differential and canonical-Hamiltonian. 

As such, It possesses clear Iimitatlons. 

An iIIustral ion is provlded by the hlstorieal 
distinctlon introduced by Lagrange [29l Hamillon [141 

and others between the exterior dynamical probJems in 

vacuum and the interior dynamícal problems withln 

physical media Exterior problems consist of parlicles 

which can be effectively approxlmated as belng point
\Ik.e whlle mov lng wHhln the homogeneous and 
isotropic vacuum under aClion- at - a-dis tanee 

inleractions (such as a space-ship in a statlonary orbit 

around Earth). The point-lik.e character of particles 

permlts the validily of conventional local- dirferenUal 

topologies (e.g " lhe Zeeman topology In special 
relal lvity); lhe homogeneity and Isotropy or space lhen 

allow the exact valldily of lhe geometries underlying 

Ue's theory (such as the Riemannlan geometry}, and the 
action-at-a- distance Interactlons assures lhelr 
representation via a potential wlth consequential 

canonicaJ characler. 
Inlerior problems consist or extended, and 

therefore deformable partlcles moving wHhln 

inhomogeneous and anisotropic physical media, wlth 

actlon- at - a-distance as well as contact-reslstive 

inleractlons (such as a space-ship during re-entry in 
Earlh's atmosphere). In the lalter case the rorces are or 
locaJ - dlrrerenlial type (e,g~ potentlal rorces actmg on 
the center - or- mass of the particle) as well as of 

nonlocaH ntegral lype (e.g .. requlnng an integral over 
the surface of l he body), lhus rendering IOapplicable 

conventional local - dirrerentlal topologles; the 

inhomogeneity and anlsotropy of the medium Imply lhe 

inapplicability of convent iOnal geometries for their 

quantitative trealmenl; whlle contact-resisllve 

interacllons violate Helmholtz's conditions for the 
exislence of a potenllal (the conditions of var/a tional 

selfadjOmtness [49 1l. thus Implying Ihe noncanonical 

character of inlenor systems, 
We can therefore say lhat Lie's theory In its 

conventional linear, local and canonlcal formulation Is 

exactly va/id for all exterior dynamical problems. 

while It IS mapplicable (and nol Nviolated") for the 

more general Interior dynamical problems on 

topological, geomelrícal, analyt ic and other grounds, 

. 1.8 . The need for a suitable generalizaDon 01 Lie's 
tbeory. Lle's theory is currenlly applied lo nonlinear, 
nonleeal and noncanonica l systems vía their 

simphficalions into more Irealable forms, e.g., via Ihe 

expansíon of nonlocaHntegral terms into power series 
in the veloci ties and tllen the transformation of lhe 

system into a coordlnate frame In which It admit a 

Hamiltonían vía the Lie-Koening Theorem [49L 
Al limes. however, nonlinear, nonlocal and 

nonhamlltonían systems cannot be consistenUy reduced 
or transforme<! into linear, local and Hamiltonian ones. 
An iIIustration exists in gravitalion, The distinction 

between exterior and interior gravitational problems 
was In full use In lhe early part of this century (see, e.g., 

Schwartzschlld's two papers, lhe first celebra.ted paper 

[721 on the exterior problem and the second IIltle k,nown 

paper (731 on lhe interior problem). The distinction was 
lhen k.ept in early well written trealiSeS in the field lsee, 
e.g., (4L [38D. The dlsUnetlon was then progresslvely 

abandoned up to lhe current trealment or all 
gravitational problems. whether inlerlor or exterior, via 

the same local-differential Riemannlan geomelry. 

The aboye trend was based on the belief that 

interior dynamical problems witllin physicaJ media can 

be effectively reduced lo a collectlon of exterior 
problems In vacuum (e.g., the reductlon of a space-shlp 
duling re-entry in our almosphere to its elementary 
conslituents movmg in vacuum). 

It is important for Ihis paper to k.now lhal lhe 
aboye reductíon is malhematlcally imposslble. for 

instance, lhe so-called No-Reduction Theorems [54) 

prohibit lhe reduction of a macroscopic Interior system 
(suchas satelllte during re-entry) with a monotonical1y 

decreasing angular momentum, to a nnite collection or 

elementary particles each one with a conserved 

angular momenlum, and viceversa. 
On geometrical grounds. gravitational collapse and 

other Interior gravilational problerns are not composed 

or Ideal poinls, bul inslead of a large number of 
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extended and hyperdense partíc les (such as protons. 

neutrons and other particles) In condi tions of total 

mutual penetrat lon. as well as of eompresslon in large 

numbers into small regions or space. This implies the 

emergenee of a strueture whleh IS arbltrarlly nonhnear 

(in coordinates and velocities). non local-integral (in 

vanous quantitles) and non- hamiltonian (variationally 

nonselfadiJint). Addit 
lonal Insurnclencles of the currenl formulatlOll or Lle's 
theory and of i ts underlying geometrles exist for t he 

characlerlzation of antimatter, e.g., because of the \acle 
of a sultable (e.g., antiautomorphlcl map whlch permlts 

the characterization of antlmatter , first, at the 
classical-ast rophySicaJ level. and Ihen al ¡he level or its 

elementary constítuents. 
Similar occurrences have recently emerged in 

astrophysics. superconduclivily, theoretical blology and 
other disciplines. These occurrences establlsh the need 

for a generaltzation of Ihe conventlonal Ue theory 

whlch is directly applieable (1.e., appllcable without 
approximation or transrormations) lO non linear, 

In tegro- dirferential and variat ionally nonselfadjOlnt 

equations for the characterization of maller, and then 

possesses a suitable antiautomorphic map for the 

effective characterization or antimatter. 

1.e: Santilli's isotopies or Ue's tbeory. In a seminal 

memoir ; ~7J written In 1978 when al Harvard Unlverslty. 

Santllli I-'lOposed a step- by-step generallzation of the 
convenlJonal formulalion of Lle lheory speclfically 

conceived for nonl ínear, integro-dlrferential and 

noncanonical equatlons. The generalize<! theory was 

subsequently studled by Santllli in ref..s [ 4SH71D, as well 

as by a num ber of mathematicians and theúrelicians, 
and It is today ealled Lle- SantJl1I isotoplc theory or 
ISOCheory (see papers [1 L[2L [sU ti L [ 12L [16H23L [251 [321 

(33l [35H37L [4oH43l monographs [3L [2.¡l [31L [74Jand 

addltional references quoted thefeln). 

A maln characteristlc of the Líe-Santilli isotheory, 

which distinguishes it f rom all other poSSlble 

generalizatlons, is 115 Misotopic" character íntended ((rom 

the Greele meaning of the word) as the capability of 

preservlng the origmal Líe axioms. More specifically, 
Sanlllll's isotoples are maps of any glven linear, local 
and canomcal structure ioto lIS mosl general possible 

nonlinear, nonlocaI and noncanonical forms whlch are 

capable of reconstructing IIneari ty, locallt y and 

canonicity in certain generalized iSOSpaces and isofields 

wilhin a fixed syslem of local coordinates. 

The latter property is remarkable, mathematically 

and physícally, inasmuch as It permits the preservation 

of the abstraet Líe theory and the transition from 

exterior to interior problems via a more general 
reallzaClon of the same theory. 

Anolher malO charactenstlc of the Lie-Santilll 

isotheory is that of admitt ing a novel antiautomorphic 

map. called isoduality. which has resulted 10 be 
effectlve for the characterizatlon of antimatter at the 
classical as well as operator levels. 

\t should be indicated that Sant llli [471 submitted 

his isotopic theory as a particular case of a yet more 
general theory toclay ca lled SantiJIi's Lie-admisslble 

theory or L/e-Santil/J genotoplc theory where the 
term genofopic Is used (in tts Greek meanlng) lo 
"Induce connguratlOn", and Interprete<! in lhe sense of 

violating the original Ue axioms, but induClng CQvering 
Lie-admissible axioms. 

This paper is written by a theoretical physicist for 

mathematícians aM It iS solely devoted lo the Lle

Santilll isotheory . A study of the broader Lle-Sant illl 

genotheory is contemplaled as a future worle. In Sect. 2 
we oull ine {he methodological foundations or the 
theory. The Isotopíes of Ue's theory are preseoted In 

Sect. 3 jOinlly with new developments, such as a study 
or the transition from the Lie-Santllll tsogroups to the 
corresponding isoalgebras. As an ilIuslrat ion of the 

capabl li líes of the isolheory. we prove its "dlrect 
universality' in gravitation, l hat is, {he achievement of 

the symmetries of all possible gravilatiOnal metrics 

(universalily), dtrectly In the frame of the exper lmenter 
(dlrect universallly). A number or fundamental open 

mathemallcal problems will be Identined dur log the 

course of our analysis. 

A comprehenslve mathematical presentation of 

the Lie-Santilli isotheory up to 1992 iS available in 

monogra¡m [741. A historical perspecti ve is avaJiable In 

monograph [31 L Recent mathematical studies on 

isomani fo lds (today called Tsagas isomanl(olds) have 
been conducted 10 rer. [751 which is a topologlcal 
complement of the algebraic studies of this papero 
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2.lsotopies and lsodualities of 
Contemporary Matbematical Structures 

l.A: Statement or the problem. Ue's theory is lhe 
embodiment or lhe virtual enl lrety of conlemporary 
mathemallcs by encompassing: lile theory of numbers; 

di rreren tia I and exterior calculus; vector and melrlc 
spaces; geometry, algebra and topology; funclional 
analysis; and others. Santllli's isolopies of Lie's theory 
require lhe isolOpiC liftlng of all lhese malhematical 
melhods. 

The most recent isolopies of conlemporary 
malhematical methods has been published in lhis 
Journal In three preceding papers by San ti lli [7 1L To 
avoid un-necessary repetition, we shatl hereln assume 
lhe entirety of lhe conlent of these papers and refer lo 
lhem as 1, 11 and m (e.g., Sect. 1.3 or Eq. (111.3.33). 
AddiUonal studies via a dl rferent lype of isotopies are 
avaílable in monographs [6 1J together with numerous 
applicatlons. In IhiS secllon we shall mainly recall 
the fundamenta.1 notlons. and refer lo papers 1, 11 and 111 

for all details. 

l.B. Isotopies and isodualities or the unit The 
fundamental isotoples from which all otllers can be 
uniquely derived are given by lhe liftings of lhe n
dimensional unit 1 = diag. (l, 1, ... , 1) of lhe current 
formulatlon of Lie's lheory Into a matrix 1 of lhe same 
dimension of 1, bUl with unrestricted funcl ional 
dependence of its elemenls in lhe local coordlnales X, 

their denvalives with respect to an independent 
variable of arbltrary order. X, lt, ... as well as any needed 
addíllonal quantity (471 [49bl [61aL [1-711 

l =l(x,x,lC, .J. (2. 1) 

The lsotopíes occur when 1 preserves all Ihe topological 
characteristics of 1, such as nowhere-degeneracy, real
valuedness and posítiVe-l rmlleness. 

Once lhe unil is ger. .:alized, lhere Is lhe nalural 
emergence of lhe map (52l [531 (61al [/-7Il 

(2.2) 

called by Sanlilli isoduallty which provides an 

anUautomorphlc image of all formulations based on 1. 
The above Iifllngs were classified by Ihe aulhor 

[22l inla 
Class 1 (generahzed units lllal are sufriciently 

smooth, bounded, nowhere degenerate, Hermilean and 
posilive-definite, characterizing lhe isotoples properly 

speakingt, 
Class n (the same as Class 1 allhough 1 iS 

negative-defmite, characlerizing isodualitlesl; 

Class m (the union of Class 1and 1I}, 
Class IV (CIass 111 plus singular IsoUOlLS); and 
Class V (Class IV plus unrestncled generalized 

uniLS, e.g., realized via discontinuous functions, 
distrlbutions, lattices, elc.l. 

AH isotopic struclures sludled in lhls paper also 
admll the same classificallon whích wllI be omitted for 
brev ity. Hereon we sha ll generally study isolopies of 
Classes I and 11, at limes lreated in a unified way vía 
lhose of Class 1I1 whe never no ambiguily arises. 
Sanlllll's isotopies of Classes IV and Vare vaslly 
unexplored al Ihis wrlting. 

2.C. Isotopies and ¡sodualities of contemporary 
mathematics. Ue's theory is construcled over ordmary 
fields P(a,+,x) hereon assumed lo be of characleristic 
zero (the flelds of real 3l, complex C and qualernionic 
numbers Q) with generic elemenls a. addition al + a2 , 
multlpllcatlon ala2: =alxa2' actditive unit O, a + O= O + 

a • a. and multiplicative UOIt 1, aXI = lxa • a. v a. al • 
a2 E f. 

The Líe-Santilli Isolheory is based 00 a 
generalization of lhe very noUon of numbers ~nd, 
consequently of fields (see ref. [39L comprehenslve 
mathematical studles [59l and monographs [61 1 for 
applicalions). 

Consider a Class 1 lining of lile unll 1 or F, 1 - 1 
wilh 1 being outside the original set, 1 ~ P. In order Tor 

1 lo be lhe len and righl unlt or Ihe new theory, It is 
necessary lo !in lhe convent ¡onal associallve 
multiplication ab into lhe so-called isomu/CJpliC]tlOn 

[471 

a b : = a)( b ~ a · b : = a x T x a = a T b , (2.3) 
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where the quantlly T is fixed and called the ISOloplc 
lelement. Whenever 1 = r , 1 Is the correct len and 

rlght unlt of the theory, 1-a = a-1 = a. Va E r, In which 

case (only) 1 Is called the lsounit. In tum, the Iiftings 

I ..... 1 and x -+ ., imply the generaUzatlon of flelds into 

the Class I structure 

called isofields, with elements a E f' called Lsonumbers 

!59l 
AlI conventlonal operations among numbers are 

evldently generalized in the transition from numbers to 

isonumbers. In fact, we have: a + b .... a+ f> = ( a + b 
lII al x a2 - al ' a2 = al T a2 = ( aAl a2)1; a- - al 

= a- l 1; a / b = c - a7 ó = e, al ..... ¡f :: a111; 
etc. Thus, convenlional squares a2 :: aa have no 

meaning under Isotopy and must be lifted ioto lhe 

lsasquare ¡~ = a-a . The isonorm is 

(2.5) 

where adenote the conventional coOjugation in F' and l a 

I lhe conventional norm. Note that lhe Isonorm is 

pasllive-deflnite (for isofields or Class 1), as a 

necessary condltion for is6topies. 

The isotopic character or the IifUng I - 1 Is 

confirmed by the fael that lhe isounil 1 verines all 

ax10ms of 1,1-1- ... -1 -1.1 71 -1,1* • 1. etc. 
The isodual iso(íelds are the ant ihomomorphic 

image or F'<a,,+,-) mduced by lhe map 1 _ld = - 1 and 

are given by the Class 11 structures 

td ll = ! rad,+,.d) Iad = ala; . d =)(fdx, Td = - T, l° = -1}, 
(2.6) 

io which the elements ad = aJo are called isodual 

iSOnumbers. For real numtJers we have nO = - n, for 
complex numbers we have cd :: -e, where e Is the 
ordlnary complex conjugate, and for quaternlons In 

matrix representatlon we have qd = -q', where t is lhe 

Hermitean conJUgate. 

It is lo be observed Ihat lhe Imaglnary number I is 

iSOsel(dual, Le., ¡nvarianl under isoduality, id =-1 :: i, 

and the conjugation of a complex number iS given by (o 
+ ixm)d = od + idxdmd =- n + (-íJ(-xX-m) = -n + 1m. 

The íSoduaJ lSOsum Is given by áQ + óQ = ca + 5Jl Q, whlle 
for the tsoduallSOmultlpllcation we have ad .eI ód = lid 

~ ód = - id T f>d = ( a6lld. 

An important property Is that the norm of 

iSOdual isofields iS negative-defin/te. 

(27) 

The lalter property has nonlrlvial implicatlons. For 

instance, It lmplíes l hat phySlcaJ quanlitles de(lned on 

an Isodual isofield, such as time, energy. angular 
momentum, etc., are negative-definíte. For these 

reasons, isOdual theories provide a novel and Intrtguing 

characlerizatioo of antímatter [6 11. 

Note also that, as a necessary condllion f or 

lsoropies (JsOdualilJes) a11 isofields F'1 (a.+.-) (¡sodua/ 

isoflelds F'llarad,+.-d)) are isomorphic (antliSOmorphic) 

lO the original fle/d f'(a.+,·l. The reader should be 

aware that lhe distinctlon between real, complex and 

quaterniooic numbers iS lost under isotopies because all 

posslble numbers are unifled by the isoreals owing lO 

the freedom in the generaliZed unít [261 
As an illustrative example, lhe ¡sounit used by 

Animalu [11 for the representation of l he Cooper pair In 

superconductivlty iS giveo by 

where t represents time. N iS a positive real constant, 

aod Ij/t aod eH are the wavefunctions of lhe two 

electrons of the Cooper pair wlth related orienlation of 

their spin. Animalu's Isounlt (2.8) thererore represents 

the non loca/-integral contnbutions due to the wave 

overlapping of the two electrons in l he Cooper pairs. 

We alSo recall lhe stlll more general genoflelds 

[59l characterized first by an isolopy of conventional 
flelds, and then by the dirrerentíatlon of lhe 
isomultiplícations lO the right b& = ÁxRxl) from that to 

the len kf> =axSXó, bó ~ il<fl, R ¡¡l S. The important 

property Is that all abstract axioms of a fie ld are 

verified per each ordered isomultiplicatlon lhus 

yielding one genofield F'>(a,+,» for the multiplicatiOn 

to lhe r lght and a different one <F'(a,+.<l for the 

multiplication to the len. Tlle latler geooflelds are al 

lhe roundation or the Lie-Sanl/lli genotopic Iheory or 

Rev. Téc. Ing. Univ. Zulia . Vol. 20 , No. 3 . 1997 



176 Kadeisvili 

genotheory for short with a Lie- admlssible (rather 

than Lie-isotopic) struclure. 

A sUII more general formu.lation is currently 

under study via the hyperstructures (see. e.g., 

monograph (7D. In essence. the genotopic elements R and 

S are irreducible and nxed in the genotoplc products 

.bfl and a<fl. In lhe transition lo the hyperstruclure. the 

genotoplc element R and Sassume (¡nHe or infinile and 

ordered or non-ordered sets of values. 

We flnally recall lhe IIftmgs characterized by the 

generalization of the sum + ancl related addltive unlt O. 
e.g~ + .... += + K+. O= K ¡i O. K E: F (a +b =a + K + b) 

called pseudo isotopies (59L which do not preserve lhe 
axioms of a fleld (e.g.• closure uMer the distributlve law 
i5 nOl vermed under lhe conventional x or isotopic • 

multlplicatlon and l he addltlOn +l. Thus. 

pseudoísoflelds are not fields. Por lhese and other 
reasons· (e.g.. the general dlvergence of the 

exponenttation). physical applicattons are restrlcled 10 

iso- and geno- flelds,' wh ile the pseudoiso- and 

pseudogeno-fields have a mere analytícal interest al 
thls wrlting. 

Despite the aboye advances, studles on the 
isonumber theory need further Invesligatlons. To begln. 

the enlire convenlional number l heory (¡ncluding all 

familiar lheorems on factorlzation etc.) can be 

subjected to an isotopic Iifting of Class 1. Moreover. we 

have the birth of new numbers without counterpart in 

the currenl number theory. such as the isonumbers of 

Class 11 (with negalive-definlte unll). of Class IV (wlth 
singular isounits) and Class V (with dlslrlbutions or 
d iscontlnuous functions as 150unlts). AII the aboye 

Iiftings then admit a furlher enlargement via ' lhe 

dlfferentiation of lhe multtplicalions lo the right and lo 

lhe len. and then yet more general formulations via the 
multivalued hyperstructures. 

The Isotopies aM Isoduallties of flelds outl ined 

aboye admit corresponding Iiftmg of all convent ional 

mathematical quantities defiend on them. such as 

vector and metric spaces, functional analys\s, etc. for 

whlch we refer for brevlty to[61l[7IL 

One can begln to understand the vastity or the 

Lie-Santilli isotheory as compared to the conventlonal 

formulation of Lie's tlleory by notíng that Ihe aboye 

hierarchy or rields Implies a corresponding hierarchy of 

Lle-isotopiC Iheories. which includes a correspondlng 

hietarchy or isospaces. tsoalgebras, isogroups. ele. 

3. lsotopíes and Isodualities oC Enveloping 
AJgebras, Líe Algebras, Lie Groups, 
Symmetries, Representation Theory 
and Tbeir ApplicatioDS 

As recalled In Sect. l. Lie's theory (see [I 3l [lsl and 

[76DIs centrally dependent on the baslc n-dlmensional 

unlt I = dlag. (I, 1, .... 1) in all ils majOr branches, such as 

enveloping algebras. L1e algebras. Lle groups. 
representation theory. etc. The malO Idea of the Lie

Santilh theory [47L [49l [61 t [621 iS the reformulation of 

lhe entlre conventional theory with respect to the most 
general possible, integro-dlfrerential 15OUOlt l(x, X. lt, ..J. 

One can therefore see rrom the very outset the 

richness and novelly of the isotopic theory. In raet. It 

can be classified into nve majn classes as occurnng ror 

isofields. Isospaces. etc .• and admits novel reahzat ions 

and applications. e.g.. In the construction of the 

symmetries of deformed line elements of metric spaces. 

3.A. lsotopies and ¡soclualities or universal 
enveloping associative algebras. Let ~ be a universal 

enveloping associative algebra [151 over a fleld F (or 

charactenstic zero) Wlth generic elements A, B. c,.... 
trivial associative preducl AS and unll 1. Their ¡SOlOpes 

~ were first lntroduced in (471 under the name of 

isoassociative enveJopes. They coincide with e as 
vector spaces bul are equipped wlth lhe lsoproduct so 
as to admlt 1 as the correct (right and left) unit 

A • B = ATB. I • A = A. I • A 'v' A t 1 = T' l. 
(3.1) 

Let e=e(Ll be lhe unIversal enveloping algebra or 

an N-dimensional Lie algebra L with ordered basis {)(k) • 

K = 1; 2 . .... N, [~(Ll ¡-" L over r. and let the infintte

dimensional basls of e(Ll be glven by the Poincaré

BlrKhoff-WItt theorem (151 A fundamental result due to 

Santilli U47L [59L Vol. 11. p. 154-163) Is as follows 

Theorem 3.1. The cosets o, 1 and Ihe standard. 

isolopically mapped monomials 
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(3.2l 

form a basiS of (he universal enve/oping isoassociative 

algebra ~(Ll ol a Lie afgebra L 

A fust importanl consequence is thal Ule isotopies 

of conventional exponentiation are glven by the 

expression, called isoexponentialion, for WE: F', 

IwwX 1 ( . ) • 
~ :; + iW-X 111 + (¡w-X) - (¡w-X) I 21 + ....... = 


. V'I'o .. = 1 l e iwTX )= (e""wl1 . (3.3) 

The impllcations of Theorem 3.1 also emerge at 

the level of functlonal analysls because all structures 

defined via the conventional exponentiatlon must be 

suitably lirted into a form compatible w ith Theorem 

3.1. M. an example, Fourier transfonns are structurally 

dependent on Ihe conventional exponentlatlon . AS a 

result, they must be IIrted under isotopíes into the 

expressions (23J 

f(xl = (¡ IZTr )f -<Xl-t<lO g(k) • ~Itx dk • 

g(k) = (IIZTr) f -<Xl-t<ID f(xl- ~-i\~ dx, (3.4) 

wlth similar liftings for Laplace transrorms, Dlrac-delta 

dislribution, etc~ not reviewed here for brevity . 

On physlcal grounds, Theorem 3.1 implies that the 

isotransrorm of a gaussian In isofunctlonal analysis 15 

given by [231 

f(x) = N. e -x / 2 a2 =Ne -x2 T /2 a2 _ 

t 


..... g(k) = N - tt _\(2 a2/ 2 = N'e - k2T¡2 /2. (3.5) 

M. a result, lhe widlhs are of the type ~x .. art , ~k .. 

a-1T' . It then follows that lhe ISQtopies ímply the 1055 

of the convenlional uncertainties ~ ~k. .. I in favor of 

the local iSouncertalnties (61bl 

(3.6) 

whlch iIIustrate the nontriviality of the the isotopy. 

The isodual Jsoenvelopes ~d are characterized by 

Ihe isodual basis X\(d = - XI¡ dermed wi th respect to the 

isodual isouníts1c1 =-1 and isoduaJ isotopic element 'f'I 
.= -T over the isodual isoflelds F'cI. The isodual Isoex

ponentiar/on is theo giveo by 

Idwd ,.dxd . IwTX iwX 
e ~ '" ld {e } = - e ~ (3.7) 

and plays an important role for l he characterlzation of 

anliparticles as possesslOg negative-definlte energy and 

moving backward in lime (as necessary when usíng 

isodual isofields). 

Il \s easy to see (ha( Theorem 3.1 holds, as 

or iginally formulated (471 for envelopes now caUed of 

Class 111. thus unifying isoenvelopes ~ and thelr iSOduals 

~d . In ract, the theorem was concelved lO uOIfy wlth 

one single Lie algebra basis Xk nonisomorphic compact 

and noncompacl algebras of the same dimension N t.see 
the example of SecUon 3.E). 

The isotopy C -+ e is not a convenlional map 

because the local coord lnates x, the infinitesimal 

generators X\( and (he parameters Wk are not changed 

by assumption, while the underlying UOlt and rtelated 

assocíatlve product are changed. Also. in lhe operator 

reallzation the Ue and Lie-Santilli isotheory can be 
. Iink.ed by nonunltary transformations UU' =1 ;t 1, for 

which 

1 -+ 1 = U 1 Ul , A B -+ 

..... U A B ul = A'. B' =A' T B' , T = ( U VI ¡-l . (3.8) 

where A' '" UAUI• S' = USUI. The lack. of equivalence of 

the two theones is f urthe r IlIuslrated by the 

inequivalence between conventional elgenvalue 

equauons, 

H l b> = E l b >, H = HI, E € !R(n,+,x), 

and their isotopic form 10 Ihe same Ham iltonían [11-711 
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where E' ( '\(n,+,x), with consequentlal dirrerent 

elgenvaJues for the same operator H, E' 11 E Lsee SecUon 

3.E ror an examplel. We thererore expect the welghls or 

Ihe Lie and Lí-5antilli theorles to be different. 

3.B. Isotopies and isodualities or Lie algebras. A 

(finite-dimensionall isospace (. over lhe isofield F' of 

lsoreal ~(ñ.+,e) or isocomplex numbers wlth ¡sotopic 
elemenl T and íSOunlt 1 = JI ís called a Lle-SantiJ/1 

aJgebra over F' (see l he original contributions [471 [<49 L 

161L [62L independent studles [3L [24L (31L (74) and 

references quoted ytherein), sametímes called 

isoalgebra (when no confuSion wllh lhe isotopies or 

non- Lie algebras arises), when lhere is a compasition 

IA,~ BI IO L. called iSOcommutator, Whlch ís isollnear (Le., 

satisfies condit ion (240)) and such that for all A. B, e E (, 

(3.93) 

[ A; [ s;c ll + [ B;lc;A II + [ C:[ A;S ll = o, 
(3.9b) 

[ AeS;C l = A. (s;c l + [A;C) · S. (3.9c1 

The lsoalgebras are said to be: isoreal (¡socomplexJ 

when F' =tt (F' = el, and iSOabelJan when (,(Bl • o v 
A. S € l. A subset (" of L is said to be an lsosubalgebra 

of t when Ita : Lo) e (,0 and an isO/deal when It ; Lol 
e Lo. A rnaximal lsoideal whlch verirles the property OC , 

•tal = OIs called the Isocenter of L For lhe iSOtopies of 
convenl lonal notions, theorems and propertles of Lie 
algebras see (74L 

We recall Ihe /sotopic generalizat/ons of Che 

celebrated L¡e's Firsc, Second and Third Theorems 

introduced 10 rer. [47L but which we do nol review here 

for brevlt Lsee [49bl [61bL [74D. f or inslance, lhe 1S01oplc 
second lheorem reads 

[XI ~XJ = XI e Xj - Xj • XI 

XI T(x, . ..l Xj - Xj lix, ...l XI =t iJk{ X, X. 11, _J- Xk. (3.10) 

wllere the e's are called lile strucLUre [unct/ons, 

generaily have an explicit dependence on lhe underlying 

isospace lsee lhe example of SecUon 3.El, and verify 
certam reslrlctions f rom l he lsalopíc Thtrd Theorern. 

Let L be an N-dimensional Lle algebra with 
convenllonal commutallon rules and slructure 

constants Cl jk on a space s(x,F) wllh local coordmates x 

ayer a field r, aM let L be (homornorphic to) the 

antisymmetric algebra [é(Uj attached lO the associalive 

envelope é(U. Then C. can be equivalently denned as 

(homomorphic to) the ant isyrnmetric algebra (e(Llr 

attached lo the isoassociative envelope ~Ll [471 [49l [74D. 
In Ihis way, an in ft Ol te number of isoalgebras c.. 
depending on all possible tsoumts 1. can be coostrucled 
vla the 1S01opies of one single Lie algebra L. Il Is easy 10 

preve l he fOllowing resulto 

Tbeorem 3.2. The ¡SOlOpies L -+ (, of an N

dimensional Lie algebra L preserve Che original 

dlmtnslonaJ/ry. 

In fact, lhe basis ek ' k = 1, 2, ..., N of a Lle algebra L is 
not changed under isotopy, except for renormalizatlon 
faclors denoted el: ' Let the commulatlon rules or L be 

given by [el' eJ! = el)1: el:. 
The isocornrnutatíon rules of lhe ¡sotopes (. are 

where e = CT. One can then see in thls way lhe 

necessHy of !ining the structure <constants> Into 
struclure <functlol\S>, as correctly predlcted by Ihe 
lsotop!c Second Theorem. 

The struclure Iheory of lhe aboye iSOalgebras is 

still unexplored 10 a considerable exlenL In the 
following we shall show that lhe maln Unes of lhe 
conventlonal struclure of Lle lheory do indeed admll a 

consiStent Isotopic IIfting. To begin, we here introduce 

the general isolinear and isocomplex L e- Santilli 
algebras denoted a(.(n,el as Ihe vector isospaces or al! 
nxn complex matrices over t. 1t Is easy lo see thal they 

are closed under isocomrnutators as In the convenlional 

case.The Isocenter of Qf.(n,CI is lhen glven by a-1, v 
aE tt. The subsel of all complex n)en matnces wilh null 

trace is also closed under lsocommutators. We shall call 

It the spec/al, complex, isOlinear isoalgebra and denote 

il wi l h S(.(n,Cl. The subsel of all ant isymmetric nxn real 

mat r ices X, Xl = - . X, is aiso closed under 

lsocornmutalors, it is called lhe isoorChogonal algebra. 
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and ít la denoted wíth O(n). 

Sy proceedlng along similar Imes, we classlfy all 

classícal, non-exceptional. Lle-Santilll algebras ayer an 

isofield or characteristic zero into lhe isotopes oC Ihe 

conventional forms, denoted wilh An. Bn. en and On 
each one admitting realizations or Classes l. 11, 111, IV 

and V (or which only Classes 1, 11 and 111 are sludied 

herein). In fact, An- I =S(.(n,C}, Sn =O<2n+I, e ); en = 

SP(n.C~ and 60 = 0(2n.tl. One can begm to see In this 

way lhe richness of lhe lsotopic lheory as compared lo 

lhe convenlionallheory. 

The noUons of Ilomomorphism. automorphlsm 

and isomorphism ar lwo isoalgebras (. and C:. as well as 

of simplicity and semisimplicity are l he conventional 

ones. Simi larly. all properlles of Lle algebras based on 

lhe addition. sucll as lhe direct and sem/direct sums, 

carry over lO lhe isotopic context unchanged (because 

or the preservation of Ihe conventional addiUve unit O). 

An Isoderfvation O or an iSoalgebra (. is an 

isolinear mapping of bnto ilSelf sal iSfying lhe property 

0(( A • 8 1) = ¡ OW ;8 I + ¡ A : 0(6) I V,A.Bd. . 
(3.12) 

Ir lwo maps o. and O2 are iSOderivatlons. lhen ¡.O. + 

&-02 is also an lsoderivatlon. and lhe isocommul ators of 

O. and O2 is also an lsodenvation. - lhe set or all 

isoderivations forms a Lie-Santilli algebra as in lhe 

CO!lventt 1case. 
The· lSOlinear map aruü of tinto ¡!self defined by 

aa A(B) = lA ;sl, v A. 6 d .. (3.13) 

IS called the isoadJOint map. 11 IS an iSOderivation. as 

one can prove via lhe iso-Jacobi ident ity. The sel of all 

aa(A) is therefore an Isollnear Isoalgebra, called 

isoadpint a/gebra and denoted ta . It also results to be 

an isoideal of the algebra of all isoderivations as In the 

cooventional case. 
l.el t(o) ;; c.. Then ( 1) :: [ (}o) ;(.(0) l c.(2! = [ ((t). t{¡) L 

etc., are also iSoideals of l t is lhen called iSOSOlvab/e 

Ir, for some positive integer n. (.(n) • O. Consider also lhe 

sequence 4 0) = L. l{¡j = [ Yo) :(,1. C.(2) = [ YI) ,' e. J , 

etc. Then C is said to be isonílporent ir, for sorne 

posltive lnteger n. c.(n) • O. One can lhen see Ihat. as m 

the conventional case, an isonilpotent algebra is al50 

isasolvable, bul lhe converse is not neeessanly tme. 

Let the /sotrace of a malrlx be given by the 

element of lhe isofleld [611 

Ti' A = ( Tr A) 1 E F' , 

where Tr A is the conventional trace. T hen 11- ( A • B ) 
:: (Ti' A ) * ( Ti' 6 ) and1'"r ( 6 A B- ¡ ) Ti' A. Thus, 

the Ti' A preserves lhe ax ioms or Tr A. by lherefore 

being a correet isotopy. Then lhe Isoscalar product 

(3.15) 

is here called lhe isokil/ing formo1t is easy to see thal 

(A ,A B) is symmetric, bilinear. and verifies the property 

(AdX(Y) .'z) + (y .A Ad X(Z)) = O. thus being a correet. 

axiom- preserving isotopy of the conventlonal Killlng 

formo 

Lel el: . k := 1, 2, .... N, be the basis of L wilh one

to-one invertible map el: - el: lo lhe basis of c.. Generic 
elements in ( can lhen be wrltten in terms or local 

coordinates x, y. Z. A = xle. and B :: y1éJ• and 

e = zl: el: = lA ;BJ = xi yj rel ;eJI = x· xJ ~l ~ 
(3. 16) 

Thus. 

(3. m 

We now Introduce lhe ¡socartan tensor 81j of an 
Isoalgebra C. via lhe defmition 
(A ;6) = g lj Xl yJ yielding 

- 1· )_ .... I: .... p (3.18)g i)'X, X, R.... - '-Ip '-JI: . 

Nole l hat the Isocartan tensor has the general 

dependence of lhe isomelric tensor of section 2.e, thus 

connrming lhe inner consislency among the various 

branches of the Isotopic lheory. In particular. the 

Isocartan tensor is generally nonlinear. non/ocal and 

noneanonical in all variables x, X. !l.... . This clar ifies 

lhat isotopic generalization of lhe Riemannian spaces 

studied in trer. [601 R(x.g,~) ~ /t(x.g.1ú. g= g(s, x. X. ~ ..J. 
has its origin in lhe very struclure of lhe Lie-isotopiC 

theory. 
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The isocartan tensor also clarlfies anolher 

fundamental point of SecUon 1, thal lhe lsotopies 

naturally lead lo an arbilrary dependence in lhe 

veloclt les and accelerations, exactly as needed for 

realistic lreatmenl of lhe problems identlfied In SecUon 

1, and lhal their reslriclion lO lhe nonlioear dependence 

00 l he coordinales x only, as generally needed for lhe 

exter ior (e.g., gravitatiooal) problem, would be 

manifestly un- necessary. 

The isotoples of lhe remaining aspects of lhe 

struclure theory of Lie algebras can be completed by 

Ihe ínlerested reader. Here we limlt ourselves to recall 
lhat when the isocarlan form Is posilive- (or negative-) 

definite, L Is compacto otherwise it is noncompact. Then 
It is easy lo prove the following 

Theorem 3.3. The Class 111 liftings (. or a compact 

(noncompact) Lie algebra L are nol necessarily 

compact (noncompact). 

The Identificatlon oC the remaining properties which 

are not preserved under IIrtmgs of Class 111 is an 
instructive tas" for the interested reader. F'or instance, 
ir the original slructure Is irreducible, its iSotoplc ¡mage 

Is not necessarily so even for Class 1, trivially, because 
the isoun!t Itself can be reducible, lhus yielding a 

reducible iSotopic structure. 

Lel C. be an Isoalgebra wilh generators Xt and 

isounit 1 =T-I > O. F'rom Equations (3.7) we lhen see lhal 
the Isodual Lie-Santtlll algebras (.tI of (. Is 

characterlzed by l ile IsOCOmmutators 

¡ X ~X Id - - (x ~X I - ¡., k (di Xd ¡.,. k(d) = - "k
i ' J - l ' J - ~Ii k' ~IJ ~I J . 

(3.19) 

(. and (.d are lhen (anti) isomorphlc. Note that the 

isoalgebras of Class 111 contaín all Class I isoalgebras t 
and all their Isoduals (d. The aboye remark,s lherefore 

show that the Lie--santllll theory can be naturally 

formulated for Class 111, as ím pllcltly done in lhe 

original proposal [<171. The formulalion of the same 

theory for Clas~ IV or V Is however conslderably 

involved on technical grounds thus requiring speclfic 

studies. 

The nollon of isodualíty applles also lo 

conventional Lie algebras 1., by permitting the 

Identification of lhe Isodual Ue algebras Ld vla the 
rule [52L [531 

( XI. XI Jd =Xd ¡ [dXd 
j - XdlldXdl = - [xi ' XJ I = 

..: C¡l (d) Xd
k , Cl jk!!l) = - CI{ (3.2Ol 

NOle lhe necessity of the isotoples for lhe very 

conslruction of lhe ísodual of conventlonal Lie algebras. 

[n fact, they requtre the nonl rivial lin of lhe unít I ~ Id 
= (-¡ l. wi lh consequential necessary generalizalion of 

the Lie product AB - BA into t lle IS010pic form ATB 
BTA. 

F'or realizations of lhe Lle-sanll 11 I Isoalgebras In 
classical and operator mechanics, we refer lhe reader 
for brevily lo ref.s (61l [11 -711. 

3.C, Isotopies and isodualities or Lie groups. A right 

Lie-Santllll group O (see lhe original contrlbulions [47l 
[49L(61L [62L inependent monographs [3L1241[31L [Hl and 

papers quoted therelnl on an isospace S(x,F'l over an 

Isofield ~. 1 =T-1 (oC isoreal ~ or isocomplex numbers 

el. also called isotransformatlon group or isogroup. íS 

a group which maps each element x € ~x,F') lOto a new 

element x' € S(x,F') via lhe isolransformations ~ = O.x = 

OTx, T fixed, such that: (1) Toe map (U, x) - O • x or 
Cx~x}') anta S(x,F'l Is lSodifferenliable; (2) 1 .. O=O.1 = 

O V OE C; and (3) 0 1• (02• xl =(O ¡ • Oi • x. V X E S(x,F') 
and 0 1 ' O2 e: O. A left isolransformation group is 

define<! accordingly. 

The nollons of connecled or simply connected 
transformar ion groups carry over lo tlle isogroups In 

their entirety . We consider hereon lhe connected 

isotransformation groups. Right or len isogroups are 

characterízed by the following laws [471 

O(ol = 1, O(w) " O(W) = O(W') · O(W) = ü(w + w'l. 

(3.21) 

Their most direct reaJizatíon or the iSotransrormation 

groups Is l hat vla isoexponen tiation (3.3), 
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(3.22) 

where the X's and w's are lhe infinitesimal generator 

and parameters, respectlvely, or the original algebra L. 

Equatlons (3.22) hold for sorne apen neighborhood or N 
or Ule iSoorigtn o( t and, in this way, characlerlze sorne 

open neighborhood or the isounit or C. Then lhe 

isatransformat tons can be reduced lO an ordinary 

transform for compulatlonal convemence, 

x' = O- x = ( TIke I XI; • wk ) • x = (ni.: elXkTWk) X , 

~ (3.23) 

wilh lhe understanding thal, on rigorous mathematical 

gl'ounds. only the IsOtransrorm ts correcl. 
SUII another Imporlanl resull oblalned In [471 is 

lhe proof that conventional group composilion laws 

admil a consistent isOIOpic lirting, resulting In lhe 

followmg isotopy o( the Baker- campbe/l-HaUSdorff 

T71eorem 

{eeX 
}e{ e~ x }= e ~ X3• X3 = X1+ X2+ [Xt ~X2 V2 + 

+ [ ( X\-X21;lx\ ~x2 11 /12+ . . . (J.241 

NOle the crucial appearance or lhe isotoplC 

elemenl T(x, x, ~ ...l in lhe exponenl of lhe tsogroup. 

Thls ensures a slructural generalízation or Ue's lheory 

of lhe desired nonlinear, nonlocal and noncanonical 

fonn. For details see (491 and (74l 
The slructure theory of isogroups Is also vastly 

unexplored al this writing. In lhe followlng we shall 
polnl out lhal llte convenlionaJ structure theory of Lie 
groups does indeed admit a consistenl iSOIOplc hfl ing. 

The Isolopies of lhe nollons of weak and sl rong 

continui l y of 1221 are a necessary pre-requislte. Let t be 
a (finite-dimensional) Lie- Santllli algebra wilh (ordered) 

baslS (Xk) , K = 1, 2. .... N. ror a sufficlently small 

neighborhood N or lhe isoorigin or c.. a generlc elemenl 

of ecan be wnlten 

Q( 1 n· ~wk (3.25) w = 1;= I.2,. .~N e e ' 

whlch characterizes some open neighborhood M or lhe 

iSOunill of C. The map 

(3.26) 

for a fixed O¡ E C. characlerizes an inner 

isoautomorphism of e onto C. The correspondíng 

isoautomorphlsm of the algebra C. can be readily 

computed by considering lhe aboye express ion In the 

neighborhOOd or lhe isounll l . In ract. we have 

0 '2 = 01 , O2 • 01-
1 ;¡ O2 + wlw2 ( X2 ;X¡ 1+ ol2J . 

(3.27) 

The reduction of the Isogrou ps lO isoalgebras 

requires the knowledge or isod lfrerenllals aw = Tdw 

and iSOderivatives a/ 3w = ldw. under which we have 

lhe following expression in one dimension: 

a 
rl o ~x- I = X·e~ Iw=o = x.. (3.28) 

3w w=o ~ 

where we have used the isodifrerential aWI; =Tk1dwI 

and related isodertvalive (Secl. 2.e). 

Thus, to every inner isoaulomorphism of e. lhere 
corresponds an Inner isoaulomorphism of t whlch can 
be expressed In the ronn: 

(3.29) 

The isogroup Ca ar all IOner isoautomorphism or e is 

called the isoadjJint group. II is posslble to prove Ihat 

the Lie-Sanlllli algebra of Ca is lhe Isoadjoint algebra La 
or c.. Thls establishes that the connections between 

algebras and groups carry over in their entirety uóder 
isotopies. 

We mentloned befare thal lhe dtrect sum or 
isoalgebras Is the convenl ional operation because lhe 

addltion is nol lifted under isolopies (otherwise there 

wlll be lhe loss or d isl ributlvity, see (591). The 

correspondlng operatlon for groups Is lhe semldlrect 

product which, as such, demands ca re In lts 

rormulallon. 

Let C be an isogroup and Ca the group or all its 

¡nner isoautomorphisms. Let OOa be a subgroup or Oa' 
and let A(g) be lhe Image of g E O under COa. The 

semldlrect lSoproduct Cí<Ooa or e and COa is the 
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isogroup of all ordered pairs 

(3.30) 

with total ¡sounit glven by 0,1A' and ¡nverse g, Asr1 = ( 

Á-l(g-l) , Á-l ,. The aboye notion plays an Important role 

In lhe isotopies of the inhomogeneous space-time 
symmetries outlined later oo. 

° 
Let el and O2 . be two isogroups with respective 

isounlls 1( and 12, The direCl isoproduct 0IOC2 of 01 

and O2 is the isogroup of all ordered pairs (&1' &2), &1 E 

1 ' g2 E O2 , with isomult lphcat lon 

(3.31) 

tolal isounil 01,12)and ¡nverse (I¡ 1-1, g2-1l. The isotopies 
or the remaining aspects of the structure theory oC Lie 
groups can then be investigated by the interested 
reader. 

Lel O be an N-dimenslonal lsotransfonnatlon 
group of Class I wllh infinitesimal generators XI: ' le = 1, 

2, _., N. The isodual Lie-Sanlilli group 011 of OQ52L [53D 

Is the N-dimensional isogroup with generators Xlc
d = -

Xk constructed wlth respect to the Isodual ísounlt 111 '" 

1 over lhe isodual isofteld (:<l. By recalling lhat w € F ~ 

wd € ¡:-d, wl1 =-w, a generic element of (:¡d in a suitable 
neighborhood of 111 Is therefore glven by 

oI\dJ.~.t1) _ ¡dwd.xd Iw.X O( ' ) 
u, w- - e ~ = - e ~ = - w . (3.32) 

The aboye antlautomorphic conjugation can also be 

defined ror conventiooal L1e group, yielding the isodual 

L.ie group GI1 of G with genenc elements UI1 (w l1) = 
Iwdx - - e IwX eed - e . 

The symmetries significant ror Ihls paper are the 
following ones: the conventional rorm G, ItS ísodual Gd, 

the isotopiC form (:¡ and the lsodual isotopic fonn (:¡d. 

These di fferenl forros are useful for the respective 
characterization oC part icles and antlpartlcles In 
vacuum (exterior problem) or wlthln physical media 
(inlerior problem). 

Jt is hoped that lhe reader can see from the aboye 
elements lhat lhe enUre convenlional Lle's lheory does 
indeed admit a consiStent and noolrivial hfling into the 
covering Lie- Santilli fo rmulatlOn. Particularl y 

Important are the Isotopies of the conventional 
representation theory, I::.nown as the isorepresentatlon 

theory, whíCh naturally yields the most general known, 

nonlinear, non local and noncanonlcal representatlons of 
Lie group5. Studies along these lalter lines were iniliated 
by Santllli with the isorepresentations of sO(2) and of 

SO(3) [61L by Klimyl::. and Santilli Klimyk 1271 and others. 
A classical reallzalion of lhe Lie-Santllll isogroups 

can be formulated en the isotangent bundle T·t(r,&,ru, & 
=TS, wlth local chart a ={rk, Pkl, ll. = 1, 2, 3, -4, S, 6, k. = 
1, 2, 3, and ¡soumt (11- 711 

12 = diag. O, f) 	 (3.33) 

the Hamilton-Santllli equations 

(3.34) 

where ¡#Q is the familiar canonlcal L1e tensor. Eq.s 
(3.34) can be tsoexponenlíated ancl, arter factorization of 
the isounlt, can be wrltten 

a(t) = ( ettalaall) • atO) = ( e tJ14T2~v (aHla~) a/aa~ ) alO), 

(3.35) 

where we have Ignored the factorlzation of the lsounlt 
In lhe tsoexponent for simplicity. 

An operalor realization of tlle Lie-Santllli 
isogroups iS given by lsoun itary Iransformallons r: = 

O'x on an isohílbert space JC [11-711 with 

o • 01 = 01• O =1 , 	 (3.36) 

wlth reallzation via an isohermitean operator H 

(3.37) 

The aboye classical and operator realizations are 
also inlerconnected in a un ique and unambíguous way 
by the iSOquantzation (sect. 2.G). 

.	3.0. Santilli's fundamental theorem on 
isosymmetries. We are now equipped lO review wilhout 

Rev. Téc. Ing. Univ. Zulla. Vol. 20. No. 3, 1997 

http:oI\dJ.~.t1


183 Fou ndations of the Lie-Santllli Isotopic Theory 

proor the following importanl result [52L [6 11 and [621 

Theorem 3.5. Let G be an N-dImensIonal LJe group o( 

isometrfes o( an m-dimensional metrlc or pseudo

melric spaa: S:x,g,F) over a (ield F 

G : 	x' = A(W) x, ( x'-y')t At g A ( x-y) • ( x-y)t g ( x-y). 

Al g A = A g At = g . (3.38) 

Then the inflnitely possible iSOlopies e ol G o ( 
Class 111 characterized by the same generators and 
parameters o( G and new tsoumts 1 (tsotoplc 
elements T), automatically leave invarlanl the iSO

compasition on rhe iSOSpaces S(x,g,F'l. g=Tg.1 =r l , 

G: '¡( = A(w) • x, ( '¡(- y)t • Al gA • ( x-y) = 

The "d irect universal" of the result ing 
lSOSymmetries for aH innnitely possible isotopies g .-. g 
\s lhen evident owlng to the complelely unrestncted 

functional dependence of tlle isolopic element T In the 

isometric g= Tg. One should also note the insufficiency 

or the so-called trivial Isotopy 

for the achievemenl of lhe desired form-invariance. In 
fact, under lhe aboye mapping lhe isoexponentlatlon 

becomes 

namely. we have lhe dlsappearance precisely of the 

ísotoplC element T In the exponent which provides the 

invariance of the isoseparation. 

3.E.lsotopies and isodualities or tbe roaational 
synunetry. We now illustrale the Lie-Sanlilli isotheory 

wllh the firsl mathematlcally and phys cally signíficant 

case, lhe Jsotopies o( Ihe rolal/onal symmetry. al so 

called iSorotationa1 symmetry. They were flrst 

achieved In [531and then studled 10 details in [61 1and 

(62L includlOg the isotopies of SU(2). their 

Isorepresentations, lhe iso-C1ebsh-Gordon coefflcients, 
etc. 

Conslder the lifting of the perfect sphere 10 
Euclidean space E(r,8,,u wilh local coordinates r =(x, y, 

z), and metrlc 1) =diag. (l . 1, 1) over lhe reals!\ 

. r2 = r la r = x x + y y + z z , (3.421 

Inlo the mast general possible ell ipsoid of Class 111 on 

iSOSpace ( 11I(r,Sjtl, &= Ta, T = dlag. ( gi l , &22 ' g33 l,l = 
lr . 

(3.43) 

Tlle invanance or the original separaUon r2 Is the 
conventlonal rotational symmetry 0(3). The iSOloplc 

techOlques Ihen permit l he conslruction, in lhe needed 

explicit and nnite fonn, of lhe Isosymmelnes 0(3) of all 

Infinllel y possible generalized invariants r2 via the 

following steps: (( ) ldenttricalion or the baslc iSOlOpic 

elemenl T in lhe IIftlng B -+ a = TI) whlch, In this 

particular case. iS gIVen by the new metnc S Itselr, T • 

~, and identification of lhe fundamental unit of lhe 

theory. 1 =r l ; (21 Consequential lifting of the basíc 

field !ft(n,+,x) ~ ~(ñ,+•• }, (3) Identlficatíon or the isospace 

In which the generaJized metric &is defined, whích is 

given by the lhree- dimensional isoeuclidean spaces 
~(r,A.~) , a=TI) • 1 = T-l; (4) Construction or the 0(3) 

symmetry via lhe use of the original parameters or ()(3) 

(lhe Eulers angles ej¡. k = l. 2, 3), the original generators 

(the angular momentum components MI;. ::o EI; IJ ri PJ) In 

lheir f undamental (adjOln t) represenlatlon, and the new 

metnc S; and (5) Classlflcation, interpretalion and 
appllcation of lhe results. 

The expl icit con slruction of 0(3) is 

stralghlforward. According lO the Lie-Sant il ll theory, 
the connecled componenl SO(3) or 0(3) is glven by [531 

SO(3): r' = ~(6) . r , !tIa) = TI\=1 .2.3 e t IMk9¡¡ 

iM Te¡¡ 
= (TIk=I .2.3 e k 11 . 	 (3.44) 

while lhe discrete component is given by l he 
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JSOlnversJons [loe. cit.1 r' = ,r.r = iTr = - r, where iT Is 

the convenlional inversion. 

Under the assumed conditions on the isotopic 

element T, the convergence of Isoexponentiations is 

ensured by the original convergence, thus permitting 

the expllcit construct ion of the isorotations, wllh 

example around the third axis (531 

x' = x cos [ ~ ( g Ilg22 ) t 1+ 

z' = z. (3..45) 

(see [slbl for general isorotations). One should note that 

the argument of the tr igonometr ic funetions as derlved 

via the aboye isoexponentiatiOn coincides with the 

isoangle of the isotrigonomelry in E:(r,UJ (see paper I60D 
lhus conrlrmlng l he remarkable compatlbilily and 

Interconnections of the various branches of the the 

isotopic theory. 
The computation of the isoalgebras 0(3) of ()(3) is 

lhen straigbforward [531. In faet, when M\( are assumed 

to be in their regular representation we have l531 

where t i/, = E l jlr. g\(1: - 1 1 . The aboye isoalgebra 
IIlustrates the exphcit dependen ce of the st ructure 

functíons. The proof of t he lsomorphism 0(3) ... 0(3) was 

done [loe. cit.1 via a suitable reformulation of the basis 

under which lhe strueture funetlons recover the value 

Éljk = Eljk 1 . 
The isoeenter of sO(3) iS eharacterized by the 

isocaSimir invariants 

d2ldO) = 1, = M~ = M· M = LI:=I,2.3MkT Mk . 
(3.47) 

In hadronlc mechanics [SI J one of the possible 

real izations is the rollowing. The linear momentum 

operator has the iSOtople fonn 

(see (1[- 711for a different realizationL The fundamental 

lsocommutation rules are then given by 

However, in their contravariant form the coordinates 

are given by r\( =~tt ri. As a result ~ I rJ = 0IJ (where the 

delta is the conventional Kronecker delta). In this case 

the fundamental isocommutation rules are given by 

namely, lheir elgenvalues coincide wlth the quantum 

ones. The operator isoalgebra 0(3) with generalors M)( = 
Eklj rJ PJ iS then given by 

where Ell = EIJkl • namely the procJucf of Che algebra 

Is generallzed, but Che struccure conscants are Che 
conventional ones (see [611 for detalls). The aboye 

results iIlustrales again the abslraet Idenllty of 

quantum and hadronlc mechanlcs. 

Note the nonlinear-nonlocal-noncanonical 

characler of isolransformal ions (3,4S) owing lO the 

unrestncled functional dependence of the diagonal 

elements gkk' Note also the extreme simplieily of the 

final results. [n fact, lhe exp licit symmetry 

transformalions of separation (3.43) are provlded by just 

plotting the glven gkk values lOto transformations (3.45) 
without any need of any additional computatlon. Note 

finally that lhe aboye invariance ineludes as par ticular 

case the general isosymmetry 0 (3) or (( he spaee

componenl of) grav itation wh ich, since il is loca11 Y 

Euclidean, remains iSomorphic lo ()(3). 

As an example, the symmetry or lhe space

component of lhe Schwartzschild line elemenl is given 

by plotting lhe following values 

(see nexl section for the f ull (3+lhlimensional case). 
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Despite this simphclty, (he Implicatlons oC the 

aboye results are nontrivial. On physical grounds, the 

¡sounit 1 > O permits a dlrect representatlon of the 

nonspherical shapes, as well as all their mfmitely 

possible deformalions. By recalling that 0(3) Is a theory 
of rigld bodles, 0(3) results to be a theory of 

deformable bodles [531 with rundamentally novel 

physical applicatiOns in the Iheory or elasticity, nuclear 

physlcs, part lcle physlcs, crystallography. and olher 

fields a61 L(62D. 

On malhematical grounds. we have equally 
intriguing novel lnslghts_ To see thero, one must nrst 

understand the bacKground isogeometry ~ IIJ(r,a,;l) 

which unirles all possible conics in E(r,8,3\) [61aL as 

mentioned earher. To be explicit in this important poinl, 

the geometrie differences between (oblale or prolate) 
elllpsoids and (elhptic or hyperbolicl parabOlolds have 
malhemallcal sen.se when projecled in our Euclidean 

space E(r,8,3\1. However all lhese surfaces are 

geometrically unified ";"llh lhe perrect isosphere In 
t(r.&$U. 

These geometrie occurrences permlts the 

uniflcatían af 0(3) aM 0(2.1), as well as af all their 

infinitely possible iSOtopes. In fael, lhe classirication of 

all possible iSOsymmelries 0(3), achleved In the origmal 
denvation (531 ¡neludes: 

(1 ) The compact 0(3) symmetry evidently for S=8 

= diag. (1 , 1, I~ 

(2) The noncompact 0(2. ¡) symmetry evldently ror 
A= diag. (1 , 1, - 1); 

(3) The. iSOdual Od(3) of 0(3) holding for S = dlag. (

1, -1, -Ir. 
(4) The isodual Od(2.I) of <X2.tl holding for A= diag. 

H,-I,I!; 
(5) The In(¡nUe family of eompacl isOIOpes 0(3) ... 

0(3) wllh 1 > Ofor ~ = diag. ( b l
2, bl, bi ~ b¡¡ > O; 

(6) The inflníte famlly of noncompaet isotopes 

0(2.1 ) ... 0(2.1l for & = diag. ( b l
2, bl, - ~2}. 

(7) The inflmle family of compact iSOdual iSOlOpes 

c¡J (3) ... Od (3) for lf = dlag. ( -b l 
Z,-Di. -Di ), 

(8) The infinite family of lsodual IsoIOpes Od (2.1) .. 

Od (2.1) for A = dlag.( - h I
2• -b.i, b:J2 ). 

Even greater dlrrerentiations between the Ue and 

L1e-Santllll lheories occur In lhelr representat ons 

because af the change in the elgenvalue equatlons due 

lo the nonunitarlty of the map Indlcatecl In Sect. 1, rrom 
lhe familiar form Htj¡ = E°ej¡, to l he isotoplc form H-¡J, = 
~.c}I • Ei(¡, EO ;tl E), Ihus Implying generalized weights, 

cartan tensors aM other struclures studíed earller. 

The flrst differences emerge In the spectrum af 

eigenvalues af ó(2) and 0(2). In facl, the 0(2) algebra on a 

conventíonal Hilbert space solely admits lhe spectrum 

M = O, l. 2. 3 (as a necessary condition of unitarity). F'or 
the coverlng ó(2) Isoalgebra on an isohilbert spaee with 
lsotople element T:: Diag. (gi l ' g22), the spectrum Is 
Instead given by M= g i l -1 / 2 g22- 1/2 M ando as such, It 

can aCQuire ccntinuous val ues in a way fully 

conslstent with lhe condition, IhiS t ime, of isounitarity. 
F'or the general 0(3) case see also (he detalled studied of 
refoS [61 l 

Similarly, I he unitary irreducible represenlations 
of su(2) are charactenze the ramil iar eigenvalues 

J2ej¡:;J(J+ I )ej¡, M = J,J-I. .... -J. 

J =0, t, 1, ... (3.49) 

Three elasses of irreducible Isorepresentatlan or 
su(2} were Identified in (631 which, ror the adjoint case, 

are given by the fOllowlng generalizatlons or Pauli's 
matrices: 

(J) Regular IsopauIJ matrices 

• _ _1 ( g22 O )
03 - /l. 

O - gi l ' 
T =dlag. (gil, 822)' Á = del T = gil &22 > O, 

[01 • OJ ~ :; l U t EIJi: 01( . (3.50b) 

03 -lIb :; ± /l.t If». o~ -1 !b = 3 /l.1 fb,. (3.5Oc) 

(2) Irregular lsopauli matrices 


0, ' = 
(O 
I 

(3.5 la) 
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[ 0'1: 02' ~ = 2 i 03 , 

(0'2. a3' ~ =2 i t:. al', [ &3', al' ~:; 21 A ai,(3.5Jb) 

0'3 *1 b > =± t:. 16 >. 

°~ Ilb = t:. ( t:. + 2) 16 > . (3.51c! 

(3) Standard isopauJ/ matrices 

( o = ( o - lAA ) ,°1 = a2 ). 

( 
A- l O I A- I O 

Á-I O )a3 = , (3.52al 
o -Á 

T '" diag. ( A, A -1 ), A;>t O. ó. =det T = 1, 

[ 0"1 •O"j ~ = í €ijl:. 0"1:.' (3.52b) 

&-'3 *1 b >= ±Ifl > • &-' ~1ó> = 31 6> . (3.52c) 

The primary' dlrferences in the above 

lsorepresentations are the following. for (he case of the 

regular isorepresentations. the isotopic contr lbut ions 

can be factorlzed with respect to the conventional Lie 

spectrum. F'or (he Irregular case thts ts no 'onger 

possible. Fmally. for the standard case we have 

conventional spectra of eigenvalues under a generalized 

structure of the matnx representations, as indicated by 
the appearance of a completely unrestricted, integro

differentlal runcHon A. 

The regular and irregular representations of 0(3) 

and su(21 are applied to the angular momentum and spin 

of particles under extreme physical conditions, such as 

an elect ron in the core of a collapsi ng star. The 

standard isorepresentations are applled to convent iooal 

part icles ev identl y because of lhe preservatlon of 

conventional quantum numbers. The appearance of the 

isotopic degrees of freedom lhen permit novel physical 

apphcations, that is, applications beyond the capaclty of 

Ue's Iheory even for lhe slmpler case of preservatíon of 

conventlonal spectra (see Section 3.G). 

The speclrum - preservi ng map f rom lhe 

conventional represemations Jg of a Lie-algebra L with 

met ric tensor g to the covering isorepresentations )g of 

the Lie- Sant llli algebra (. with isometric g= Tg and 

Isounit 1 =r 1 is important for phySical application. It 

IS called the Klimyk rule [271 and it given by 

P =1:. 1, 1:. E F' , (3.53) 

under which lie algebras are tumed into Lie-Santilll 
. isoalgebras 

Ji Jj - Jj Ji = CilJI:. .. Di ·)j - )j·)I ) k-¡ T 

= C"I:. 1:.-1T)"IJ .... 

tha! IS, 

thus showing the preservation of the original structure 
constants. 

However, by no means, the Kllmyl:. rule can 

prOduce al/ Lie-Santilli isoalgebras, because the latter 

are generally characterized by nonunitary transfonns 

of conventional a1gebras, wilh a general variatlon of the 
structure constants. 

Nevertheless, the Klimyl:. rule is surrlcient for a 

number of physical applicalions where the preservallon 

or convenlional quantum numbers Is Important, 

tJecause it permits lhe identi flcation of one specific and 

expliclt rorm of standard isorepresentations w ith 

'1lidden~ degrees of freedom represented by the isotopiC 

element T aval lable for specific uses. F'or instance. the 

standard isopau li matrices permit lhe reconstruction or 

the exact isospin symmelry In nuclear phys ics under 

electromagnelic and weaK interactions [631. or lhe 

constructlon of lhe isoquark. theory with' all 

conventional quantum numbers, yet an e x a e t 
con{jnement (w ith an ident lcall y null probability or 

tunnel effects for f ree quarl:s because of the 

incoherence between lhe Interior and exterior Hilberl 

spacesl [68l and olher novel applications. 

3.F. Isotopies and isodualities of the Lorena and 
Poincare' symmetries. 

Consider Ihe hne element in Minkowsl<l space x2 = # 
~vxV.1l. v = 1, 2, 3, 4. wlth local coordinates x = { x J. x2. 

x , ti 1, x4 = Col , and metr ic 11 = dlag. (1 l. 1, -1). Its 
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simple invarlance group, lhe slx-dimens!onal Lorenlz 

group U3.1 ), 15 characterized by lhe (ordered sets of) 

parameters given by lhe Eu lers angles and speed 

parameter, w = ( WJc. l = ( e, v l, 1;. = 1, 2, ..., 6, and 

generators X = { Xk 1 = 1, in thelr known { MIlV 
fundamental represenlation (see, e.g., [31 l (32D. 

SUppose now lhal the Minkowskian line element is 

lirted ioto lhe mos! general possible nonlinear-inlegTaI 

form verifymg lhe cooditions of Class 111 

!! - .ll' ( . J v g = g t , x - xr- g¡.lV'x. x, J(,.. x , del g¡¡t' O. 
(3.54) 

which represent: all modificatíons of lhe Minkowskl 
melrlc as encountered, e .g., In particle physics; 

conventional exterior gravi tational line elements with g 
= g(x), such as lhe full Schwartz.schild line elemen!; all 

its possible generalízations for lhe Interior problem; 

etc. 
1lle expllcit fonn of the simple, six-dimensional 

invariance of generaló:ed line element x!! was nrst 

conslructed by Santilli {;jl l by rollowing lhe space-lime 

version of Steps I to 5 of lhe preceding section. Step 1 is 

lhe identlncatlon of lhe fundamental iSotopiC elemenl 
T vla lhe ractOlization of the Minkowski metric, g = TlJ 
which, under the assumed condltlons, can always be 

diagonalized inlo lhe form 

T :: diag. ( gil ' g22 •g33 ' g44 l, T = T r. del T ¡¡t' O 
(3.55) 

The fundamental isounit of lhe theory is lheo given by 

1=T-1. 
Step 2 is lhe IIfting of lhe conventional numbers 

loto lhe lsonumbers via lhe isorlelds 1I(íl,+,-), ñ = o 1 
(whlch are dirferent than those of ()(3) because of the 

dirrerent dimension of the isounit). 

Step 3 is the conslruction of the iSOSpaces in 

which the Isometric g is properly defin ed, which are 

glven by lhe isOmink.owsk.i spaces ~(x,g.~l. 1lle reader 

should keep In mind lhat, when g is a conventlonal 

Rlemannian metnc, ISOSpaCes ~( x.g,;¡ ) are nol the 

Rlemannian spaces R(x,g,3U becau.se lhe basic units of 

(he two spaces are different. 

Slep 4 is a lso slraightfor ward. The Lorenlz

Santilli isosymmetry [(3.1 ) is characterized by the 

ISolransformations 

oo. J) : X(w)x. (3.56) 

verifying lhe hasic properties 

Ag Al = g, (3.57aJ 

net A = [Det CÁTl I = ±1. 

It is easy to see t hat (.(3.1) preserves the original 

connectivity properties o( L(3.¡) (see (61 1for a detaí led 
stUdy). The connecled component SO<3.¡) of ( (3.1) is 

characterízed by Det Á = +1 and has lhe struclure [loe. 

cit.! 

' ( ) TI- i XI;. • WkA w = k=I,2,...,6 ~ 

= ( TII;.=I,2,.... 6 e I Xk T wk.l1 , (3.58.1 

where the parameters are the conventional ones, lhe 

generators Xk are also the conventional ones in their 
rundamental representation and the isotopic elemenl T 

IS given by Equations (3.23). The dlScrete part of [ (3. ¡) is 

characlerized by Det A ;o - 1, and it is glven by the 

space-tlme tsolnverstons (loe. cíl.! 

ñ.x = 1T X = - r . x4 ) , T" X = T X ;o ( r. - x4 ) . 
(3.fB) 

Aga!n, under lhe assumed condltlons for T, lhe 

convergence of infinl te series (35 8) is ensured by lhe 
original convergence, thus perm ittíng (he expllcll 

calculation of the syrnmetry transrormallons in lhe 

needed explícit , finile formo Their space components 

have been given in the preceding section 3.E. The 

addltlonal Lorentz- Sanlilli isoboosts can al50 be 

explicllly computed, ylelding lhe expresslon for al! 

possible isOmetrics gt511 

!3.6OaJ 

x • 3 = x3 cosh ( v ( &33 g44 ) t I -
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- X4g44 ( g33 &.... ) -t SlOh [v ( g33 g.... ) t J= 

= y( X3 - g33- 1I2 g.... 1/2 h4 ), (3.60b) 

+ x~ cosh [ v ( ~ g.... ) i I= 

(3.60<:) 

x4where = Ca t, ~ = vIco, 

(3.6Ial 

(3.6Ib) 

Agai n, one should note: (A) the unrestricted 
character of the functional dependence of the ISometric 
g; (B) the remarkable slmpltclty of the fi nal results 
where by the explicit symmetry transformat ions are 

merely given by plottlOg the values g~ in Equations 
(3.60); and (e) the generally non linear- non local
noncanonical character of the lSosymmetry. 

The \socornmutatlOn rules when the generators 
MlJ.v are in lheir regular representation can al50 be 

readily computed and are gIVen by [loe. clt.1 

0(3.1 ) : [fv\J.v:Ma¡3) = gva ~ - ~a M¡3v

- g~ ~+~Mav , 	 (3.62l 

wllh lsocasimirs 

d O) = 1 c(¡) = t ~v T MJ-v = M-M - N -N , 

(3.63al 

= { MI2' M23. M31 l, N = {Mol , M02, Mo3} .(3.63c) 

The classíflcatlon of all possible ISOlOpes SO<3.1) 
was also done In the original const ruction (S II via Ihe 
realizations of the i50tOplC element 

T = diag. ( ± bl¿, ± ~¿ . ± bJ¿ . ± b/) , ~ > O, 
(3.64) 

where lhe b's are the characlerislic runclions or lhe 

Interior rnedium, resulllng In: 

(1) The conventlonal orthogonal syrnmetry SO(.cl 
. for T =diag. (1, 1, 1, -I}, 

(2) The conventional Lorentz syrnmetry SO(3. 1l for 
T = diag. (1 , 1, l. 1); 

(3) the conventlonal de Sitter symmetry SO(2.2l for 
T 	= diag. (1 , 1, - l. I r, 


(41 the isodual SOd(4) for T = diag. H, -1, - 1, I}, 


(S) the isooual Od(3.1) for T = - dlag. O, 1, 1, I}, 

(6) the isodual SOd(2.2) for T = dlag. H , -1 , 1, -I}, 
(7) the infmite family of ISotopes sO(4) .. so(4) for 

T = diag. ( bl2 , b22 , bi, -bi }, 
(8) the infinlte famlly of isotopes Sú(3.1 ) .. S()(3.1) 

for T = dlag. ( bI 2 , 1>22 , bi, bi }, 
(9) the infin lte famlly of isolopes 

Sú(2,2) .. SQ(2.2) for T = dlag. ( -b1 2 , ~2, bi, bi}. 
(10) the infmite famlly of isoduaJs SOd(4) .. SOd(4) 

for T = dlag. ( -b J2, -bl , -bi, bi l; 
(1lllhe Inflnite famlly of isoduals SOd¡3.l)" SQ(3.1) 

for T = - diag. ( bl 2 , b22 , bi. bi }, 
(12l the innnite rami ly or isoduals SOd(2.21 .. 

sod(2.2l ror T = diag. ( '01 2 , _~2. - b-i, -bi). 
On the basis of the aboye results. Sanlilli [61 1 

submltted the conjecture that al/ sImple Lie algebra of 

Che same dimension over a field af characlerlStJc zero 
In Carlan classificalion can be unified Into ane single 

allStract isolapic aigebra af the same dimension. 

The aboye conjecture was proved by Santllli for 
the cases n =3 and 6. A theorem uOIfying all possible 
fields into the isoreals was proved by Kadeisvili el al [261 

in the expeclation of such general uni rication, 'out IlS 
study has remained unexplored al this writing. 

In the aboye presentation we have shown that the 
liftlng or the Lorentz symmetry can be naturally 
formulated for Class 111. Nevertheless, whenever dealing 
with 'physlcal applicatlons, the isotopic element is 
restricted to have lhe positive- or negative-deflnite 

struclure T = ±diag. (bI 2, '022, bl, b4 2), thus 
restrlctmg lhe isotopies to SCl(3.1l - S()(3.¡) and SOd(3. tl .. 

SOd¡3.1l. 
The operator realization of the latter Lorentz

Santilh isoalgebra Is Ihe followlOg. The Imear four-
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189 Fou ndations o[ the Lie-Santllli Isotoptc Theory 

momentum admits the isotopic realization [11-711 

Also, for xI! = 1\lvxv (where 11 is Ihe convenlional 
Minkowski metric). one can show that ~Xv = ~IJ.V- The 
fundamental relativislic isocornmutation rules are lhen 
glven by [61l [6sD 

The isocommutation rules are lhen given by 

0(3.1 ) : [ ~v;~1 = i (~va~-~~v 

(3.621 

v represents lhe Lorentz paramelers, a represents lhe 
" Euler's angles, and a characterizes convenlional space

time translations. 

The connected component of lhe Isopoincare 
group is given by 

where lhe IsotopiC element T and the Lorentz 
generators Mllv have Ihe same realization as for ól3.1 l. 
The primary dirrerent with isosymmetries 0«(3. 11 is Ihe 
appearance of the isotranslations 

thus confirming lhe isomorphlSm SO(3. 1) " so(3.1) for all 
positíve-deflnite T. 

The PoinC8r~Santi(ll iSOsymmetry 

(3.65) 

and Its lSodual pd(3.1) llave beeo been constructed In 
their classical [621 and operator [621forms as well as in 
lheir isospinorial form ~(3.() = S(.(2.C)x1'(3.I) (69L We 
here IImit ourselves lo a brief outline of lhe 
nonspinorial case mainly 10 illustrate Ihe advances in 
Ihe Slruclure of isoalgebras and lsogroups sludled In 
Ihls papero 

A generic element of P(3. ¡) can be written A = ( A, 
á ), A E 0<3.1), aE 1iJ.I) with isocomposition 

J.: • A = ( Á', a') • ( J..., a) = ( A· A' ,a + h.'. a' ) , 
(3.66) 

The realization important for physical appllcations 
15 that vía conventional generators In their adjoint 
representatlon for a syslem of n particles of non-nuil 
mass "ma 

P = La Pa }, k = 1,2, .10, (3.67) 

and conventlooal parameter5 w =(wJ¡J = (v , e, al, where 

1i3.1l· p .. O. (3.69) 

The general POlncaré-santil/J isolransformatlons are 
then glven by U61 l [62D 

Lorentz-Santilll isotransf. , (3.7()a) 

x..' :; X + ao B(s. x, ic, x, ...l, tsotransJ., (3.70b) 

(3.7Ocl 

X ' = nt. x =. ( r, - x4 l, time isoinv .• (3.700) 

where lhe B-functions are glven by the expanslons 

'\t = ~ + aa [ ~ ; Pa 1I I I + 

+ aaai3 [[ ~;Pa l:P¡3J / 2I + ...... (3.71) 

The Isocommutation rules of 1'<3.1l In lhe operator 
reallzatiorJS índicaled earl ier are 

( M¡¡v ;Ma¡31 = i ( 11va ~ -~~v 

-~~ + ~Mav ), (3.7Za) 
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(3.72b) 

and the iSoCenter IS characterlzed by the isocasimlrs 

d O) = 1 , di) = ~ = P T P = Pf1 gllV P , (3.73a)v 

d2l = '11'2 = Wf1 gllV Wv , (3.73b) 

(3.73c) 

The restrlcled ísotransformations occur when the 

isotopic element T is constant. 

An important applicatlon of the isotranslation is 

the characterization of the so-called isoplane-waves 
on tVI(x,i¡,§I) 

ipx _ 1 ipTx _ 1 lo., gllV Xv 
~xl = e ~ - e - e ~f.L 

2 =1 e ¡( Pie ~ xk. - P4 bi x4 ) , (3.74) 

which are solutlOns of the isotopic field equations, 

represents electromagnetic waves propagating wlthln 

Inhomogeneous and aniSotropic media such as out 
atmosphere and orrer quite Intriguing predletlons ror 
experimentally verifiable <novel> effeets, that is, 

effects beyond lhe predlclive or descriptive capacities 
of the Poincaré symmetry (see Ihe eompanion paper 

[60D. 

AS one ean see, the verlfleatlon of total 
conservation laws (ror a system assumed as isolated 

from the rest of the universe), lS inlnnsie in the very 
structure of the isosymmetry. In ract, the generators 
are the conventional ones and, since Ihey are lnvartant 
under the acUon of the group they generale, they 
characteriZe conventional total conservation laws. The 

slmpllcity of reading off the tolal conservaBon laws 

f rom the generators of the isosymmetry should be 

eompared with the rather complex proof in 

conventional gravltational theones. 

The iSOdual Poincaré-Santllll /SOSymmetry f!d(3.1 ) 

is eharacterized by the isodual generators Xlo:. d = - XIo:.. 
the ísodual pararneters Wlo:.d = - wk ' and the isodual 
isotOplC element Td = -T, resulting in the change of 

sign of isotransforms. This implies a novel law of 

universal invariant under iSodua/lty which essentially 

slate thal any syslem which is invarianl under a given 
symmetry 15 aulomatically Invarianl under ils isodual. 
In tum, lhls law apparenlly permits novel advances in 
the study of antiparticles [6 11 

1'he significan mee of the Lle-Santilli isolheory for 

. gravitation is iIlustraled by lhe following imporlanl 

properly of lhe isosymmetry ~3.1 ) whieh ev idenLly 
follows from or Theorem 3.5: 

Theorem 3.6 [51 L The Poincaré- SantiIJl isosymmetry 

(1(3.1 ) is directly universal for all infiniteJy possible 
(3+1h11mensional invariants 

( x - y ji! ~Jx, x, it, . ..l ( x - y )1' , ~ = TTJ , (3.75) 

NOle Ihal Ihe aboye Iheorem includes as particular 
cases lhe eonventional Riemannian metric g(x) = li(xl, 
thus providing lhe universal invarlance of exterior 

gravitation in vacuum. More generally, the theorem 

Ineludes all inflnite ly possible signature-preserving 
modlfieations of the Mink.owslel and Rlemannian 

metrics for interior problems. The simplicity or Ihis 
universal Invarlance should also be Io:.epl in mlnd and 

compared with the Jcnown eomplexily of olher 
approaches to nonlinear symmetries. In faet, one 

merely plots the g~1l elemenls in isolraflSforms (3.45), 

(3.60), (3.70) wlthout any need to compute anyl hlng, 

because the Invariance of general separalion (3.75) is 

ensured by the theorem. For numerous examples, see 
[61L [62L 

As anticlpaled in Sect. l.E, a remarkable property 

or the Lie- Santilli theory is the eapabiilly lO unify In 

one, single, abstraet isosymmetry P(3.1) all possible 
linear or nonhnear, local or nonlocal, Hamiltonian or 
nonllamlltoman. relativ istic or gravitational, exterior 
and interior, classical and operator systems. 

3.G: Mathematical and physical applications. Lie's 

theory iS lenown lO be al lhe foundalion or virtuaHy aH 

branches of matbematics. The existence of inlriguing 

and novel applicalions in malhematics originati ng from 
lhe Lle-Santllll llleory IS l hen self-evident. 

With l ile understanding lhat malhemaUcal studles 

are at their first infancy, the isotopies llave already 

idenlified new branches of mathemalics besldes 
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isoalgebras. isogroups and Isorepresentations. We here 

mention: the new branch of number lheory deaHng with 

isonumbers; the new branch oí functional isoanalysiS 

deaJing with T-operator special Isofuncllons, 

iSotransforms and isodlstribution; the new branch of 

topology deallng wlth lhe peculiar integro-differential 

topology of the iSotopic lheory; lhe new branch of the 

theory or manifold dealing with isomanifolds and thelr 
Inl r igulng proper tles; and so on. It is hoped lhat 
mleresled mathematíclans wllI canlributec\ to these 

novel mathematleal advanees whleh have been 

identlried and developed until now solely by physicists. 

Lie's theory in lIs lraditional linear-Iocal

canoOlcal formulation ís also I:.nown to be al the 

foundation of a1l branches of contemporary phySics. 

Profound physlcal implicatlons due lo the eovering, 

nonlinear-nonlocal-noncanonical Lie-Santilli theory 

cannol thererore be dismísSed In a crec\ible way. 

Wlth the understanding thal these latter 

appllcations too are al lhe begmning and so mueh 

remains lo be done, let u.s reeall the followlng 
applieatlollS of lhe Poincaré=-santilli isQsymmetry P(3.1 ) 

!see [611 and [62] ror detallsk 

(Il The universal Invarlance or all posslble 

conventionaJ gravilation (sil 
(2) The geometric unificabon of the special and 

general relatlvitíes. In fael, the abstraet iSOIOpe f>(3.1) 

unifies lhe isosymmetry wi(h gravitational isounit 1 = 

['nxlrl , g(x) = T(xm, and the reallzation wilh lSOunit I o: 

diag. (1, 1, 1, 1) characterizing {he specíal relativity [511 

(3) The universal mvar lance for aH pass ble 

interior extensions of Telativisli.c and gravltational 

theories [SIl. 
(4) ReconstruCl ion al Ihe isotopic level of l he 

exact SU(2)-¡sospin symmetry under electromagnetic 
and weak 'nteractions via lhe use of {he standard 
lSOpauli matrices (3.52) with},.2 '" m¡lmn [63~ 

(S) Ql.Janlítative representation of Rauch's 

interferometrlc measures on (he 4Tr- splnor ial symmetry 

vía the isotopies of Dirac's equation invariant under 

~3.I ) [69~ 

(6) First numerical representatlon of lhe total 

magnelic moment of few-body nuclei via lhe $0(3) 

symmelry and ils direct representation of l he 

deformation of lhe charge distribution of nueleons and 

consequential alteral ian of their inlrinsie magnetlc 

moments [69l 

(7) Nonlocal represenlation of the Bose-Einstein 

eorrelation rrom firs( isotopic prinCipies in rull 
numerical agreement wi th the data (rom the UAI 

experlments, whlle permittmg a causal deseription of 

non local interactlons and l he reconstruction of their 

exact Poincaré syrnmetry al l he isolOpic level ([58L [8D; 
(a) Quantitatlve representatlon of the eleetron 

pairing in supereonductlvity [Il 
(6) Quantitative-numerical representatlon of the 

behaviour of [he mean 11 ves of unslable hadrons wlth 

speed (whiCh, as wetl I:.nown, are anomalous bet ween 30 

and lOO GeV and conventional between l OO and 400 GeV 

for lhe KO-system) via the Isom inkowskian 

geometrization of the physical medium in lheir interior 

[Sl[7\}; 
(9) Application lO quarl:.s theones vla Klimy k. rule 

for (he standard isorepresentaUons of SO(3) with 

conventional quantum numbers wíth exact confinement 
of quarks (permitted by the ineoherenee of the interior 

isohilbert and exterior Hilbert spaces), and other 

intrlgulng posslbilitles, sueh as lhe regalnlng or 
convergent perturbative series for strong interaetions 

(which iS possible whenever IT I< 1) [6a~ 
(1 0) Numerieal representation of Arp'S measures on 

quasars redshift as being due to the decrease of speed of 

light in ehromospheres and Its isominkowskian 

geometrization [37~ 
(11 ) Numerícal representatíon of the jlint redshlfl 

and blueshifls of palrs of quasars, particularly when 

proved via gamma spectroseopy to be physically 

connectec\ lo lhe associated galaxles, and predictlon of a 

measurable isominkowsk lan redshift for sunlight at 

sunsel [6n 

(12) Application to local reallsm via the proor that 

Bell's inequahty, von Neumann's Iheorem and all thal 

are inapplicable (rather than "v iolatec\'1 under isotopíes 
(evidently because of the nonunitary sl rueture of the 

IIftingl, thus permltling an isotopiC completlon of 

quantum mechanies much along the celebrated E-P-R 

argument [65~ 

(1 3) Application to q-deformat ions, diserete time 

theories and other ongoing studies via their 

axiomatlzatlon into a rorm Iflvariant under thelr own 
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time evolulion and which coincide wllh Ihe 

convenlional quanlum mechanical axiomalization al the 

abslrael level [33k and other applleatlons (see 

monographs [61 Jand [621 
(14) Novel possibil ilies in theorelical blology, such 

as a quantltative represenlation of Ihe growth of sea 

shells whlch, according to computer simulatlons, crack 

during their grow lh is subjected lO Ihe conventional 
Minkowsklan geometry, while admlt a normal growth 
under Ihe covering isominkowsK.Jan geomelry of Class 

111 (lile latter one being neecled lo represenl blfurcations 
which require inversions oC time) [601 
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