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Abstract 

In the flrst paper of this sertes we have introduced the isotoples of the differentlal calculus and of 
Newton's equations of motion. In the second paper we used these results to construct the isotopJes of 
analytic and quantum mechanJcs. In th1s third paper we apply the preceding results for the construction 
of the lsotoples of conventional differentlal geometrtes, such as the symplectic and Riemann1an 
geometrtes. The primaIy motlvation ls that, in theJr conventional formulation, these geometrtes are 
local-differential. As such, the are only valid for the exterior dynamical problem of point-l1ke test bodies 
moving in the homogeneous and isotropic vacuum. The isotoplc geometrtes result instead to be valid for 
the inteIior dynam1cal problem of extended and deformable test bodies moving With1n inhomogeneous 
and anJsotroplc physlcal media With conventionallocal-differentlal and vartattonally self-adjoint as well 
as nonlocal-integral and vartationally nonselfadjoint resistlve forces. In th1s papa we show that the 
isotoptc geometrtes preserve all ortginal axioms to such and extent that they coincide at the abstract 
level With the conventional geometrtes. 

Key worcla: lsotoples, lsosymplect1c geomeby, isortemann1an geometry. 

Levantamiento isotópico de geometrías
diferenciales 

Resumen 
En el primer trabajo de esta serie presentamos las isotopías del cálculo d1ferenc1al y de las 

ecuaciones de movimiento de Newton. En el segundo, u tWzamos estos resultados para construir las 
isotopias de la mecánica cuántica y analítica. En este tercer trabajo aplicamos los resultados antertores 
para la construcción de las isotopias de geometrias diferenc1ales convencionales, tales como las 
geometrias simpléticas y de Riemann. La motlvación prtmarta es que, en su formulación convencional, 
estas geometrias son locales..d1ferendales. Como tales, sólo son válidas para el problema dinámico 
externo de cuerpos de prueba puntuales que se mueven en un vacío homogéneo e isotópico. En cambl0, 
estas geometrias isotópicas resultan ser válidas para el problema dinámico interno de cuerpos 
experimentales extendidos y defonnables moviéndose en medios fistcos no h omogéneos y anJsotóplcos 
con fuerzas resistivas tanto locales d1ferendales y variablemente auto-Hndantes como no 
locales-integrales y vartablemente no auto-Hndantes. En este trabajo demostramos que las geometrias 
isotópicas preservan todos los axiomas ortginales hasta un punto tal que coinciden, a nivel abstracto, 
con las geometrias convencionales. 

Palabras claves: Isotopias, geometría isosimplética, geometría 1sor1eman1ana. 
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1. Statement of tbe problem. 

The contemporary geometries, such as the symplectic 

geometry (see, e.g., [11 or 1231 for a review and 

comprehenslve lIterature) and the RJemannian 

geometry [1 41 (see, e.g., I1I for historical profiles and [121 
for a recent account in local coordinates) have 

permitted during this century truly outstanding 

achievement for a deeper understanding of the physical 
structure of the Vniverse (see Einstein's collected papers 

[29D. 

Nevert he less, lhese geometries are local
differential and, as such, they have well defined 

limitations in their applications to physical systems 

whlch are expressed by the historical distinction 

between 
¡) the exterior dynamica/ prob/ems, COnsisting of 

point-like test bodies moving in the homogeneous and 

isotropic vacuum, such as a space-ship in a stationary 

orbit In vacuum around Earlh or a proton in a particle 

acceleralor; and 

2l the interior dynamical prob/ems, consisting of 

extended and deformable test bodies moving wlthin 

Inhomogeneous and anisotropic physical medIa, such as 

a space-shlp during re-entry in our atmosphere, or a 

proton in l he care of a collapsíng star. 

This distinction was introduced by Lag range [IOL 

Hamilton [71 and other founders of analytic dynamlcs. 

In the preceding paper [25J {hereinafter referred to as 

Paper () we have recalled that Newton's equations of 

motion contain local-differential terms describing 

action-at-a-distance, potential forces and representable 

via a first-order Lagrangian, plus nonlocal-lntegral and 

nonlagrangian terms representing precisely the resistive 

forces of interior dynamical problems. As recalled in 

paper [261 (hereinafter referred to as Paper In, Lagrange 

and Hamilton formulated their celebrated equations, not 

in lhe form of widespread use 10 the contemporary 

mathemaUcal and physical Iiterature, but rather in the 

form wi th externa/ terms represenUng precisely lhe 

additional forces of interior conditions. 

The distincUon between exterior and interior 

dynamical problems was fully adopted during the early 

studies 10 gravitation [291, as illustrated, e.g ., by 

Schwartzschild's two papers, the first famous paper 

[27J on lhe exterior gravitational problem and the 

5econd IIttle known paper [281 on the interior prolJlern. 
The same distincUon was also kept in the early well 

written treatises in gravitation (see, e.g., lhe monograph 

by Bergmann [21 with a preface by Einstein). 

Particularly significative is the adoption in these 

early studies of the Riemannian geometry and ensuing 
physical theor ies as being exactly valid for the exterior 

problem and approximately valid for the interior 

problem [2BI. 
Regret tably , {he aboye disti nclion was 

progressively relaxed during the second part of this 

century, up to the current condition of virtual complete 

silence in the specialized mathematical and physical 

Ilerature. 

In particu lar. lhe distinction was eliminated where 

it is needed most, in the Interior conditions of 

gravitational collapse, black holes, big bang and all thalo 

where the interior dynamical problem reaches its 

extreme conditions. In ract, collapsing stars are nol a 

collectlon of ideal point-particles (as necessary for the 

applicabi lity of the symplectic and Riemannian 

geomelr ies), but in the physical reality they are 

composed of extended and hyperdense protons and 
neutrons in conditions of total mutual penetration, as 

well as of compression in large numbers into small 

regions of space. These conditions imply the most 

general conceivable interior field equations which are 

arbttrarily nonllnear in the ve/ocUies and accelerations, 
as well as nonlocallntegral and nonlagrangian. The lack 

of exact validity of conventional local-differential 

geometries under the latter conditions is then beyond 

scientific doubts. 

The elimination of interior dynamlcal conditions 

from the contemporary mathematical and physical 

literature has been essentially done via the reduction of 

interior problems to a collection of exterior ones in 

vacuum. For instance, a space-ship during re-entry 

with nonlocaHntegral and variationally non-self

adi'int forces IS reduced to an ideal collection of point

like elementary particles. The expectation is that, in this 

reduction, conventional geometries are re-established at 

the parlicle leve!. 

By keeping in kind that a quantum version of 

gravity (which is a pre-requisite for the reduction) has 

not yet been achieved in a form acceptable by the 

scientific community at large, recent studies have 

Rev. Téc. Ing. Untv. Zulla. Vol 19, No. 2. 1996 



Isotopic lifting of dlfferential geometries 7 1 

established that the aboye reduction is mathematica lly 

and physically impossible. In fact, there ex ist 

nowadays the so-called No-Reduction Theorems [241 

whlch establish that a space-ship during re-entry on a 

decaying orbit with a monotonically decaying angular 

momentum cannot be consistently reduced to a finite 

collection of poinHik.e particles on stable orbits with 

conserved angular momenta (as necessary for the exact 

applicabil it y of convenlional geometries and 
symmetriesl. Additional reasons for the lack. of exact 

applicabil lty of conventional geometries for interior 

conditions are studied in reL [24!. 
At any rate, one of the pillars of the Riemannian 

geometry is the representation of the homogeneityand 

isotropy of the vacuum. As such, the same geometry 

cannot errecti vely represent the inhomogenetty and 

anisotropy of phys/cal media such as our atmosphere. 

AIso, it is known in the Iiterature (see, e.g., E. 

Cartan [4D that the Riemannian geometry can recovers 

only some bul not all Newtonian systems of our 

physlcal reallty. A typical examples is given by missiles 
In atmosphere which nowadays have reached suCh 

speeds to require drag rorces up to the seventh power in 

the velocity and more, 

F'NSA = - ~ 'Y Xk (1.1)L.k- I,2.3.4,S,6.7 k , 

where the 1's are positive-deflnlte constants. F'orce (1.1) 

is ev idently a truncated power series approximation of 

lhe actual nonlocaHntegral forces dependlng on the 
shape of the missile. The Inapplicablllty of the 

Riemannian geometry for intenor systerns with forces 

(1.1 ) is then beyond scientific doubts. 

The fundamental geometric problem addressed in 

this paper is therefore the identification of novel 

geometries specifically constructed for interior 

dynamlca/ problems, that i50 capable o( representing 

extended and deformable test bodies mowing within 

lnhomogeneous and anisotropic physlca/ media wtth 
arbitrarily nonJinear, nonloca/-integral and 

nonlagrangian (orces. Moreover, to be effective for 

physical applications (particularly for experimental 

verlflcations), the new geometries must admJt the 

original geometries as a particular case (¡.e., be 

covering geometries) and permit a clear and 

unambiguous separation between the exterior and 

interior contributions . 

Without any claim of uniqueness, this author 

selected the isotopic methüds for the construction of 

the new geometries, as originally presented in ref.s 

[18,19,201 and then studied in detail in [24,251 under the 

names of isoeuclidean, isominkowskian, isosymplectic, 

isoaffine and isoriemannian geometries, genericall y 

referred lo as isogeometries. The selection was done on 

purely physical grounds because the isotopies permit 
the preservation of the original geometric axiorns, thus 
preserving the Einsteinlan axioms as well. Other 

geometries, such as conventional integral geometries, do 

nol generally preserve the original axioms, thus creating 

the problem of identifying new physical axioms and, 

after that, of proving them experlmentally. 

Moreover, the isogeometries admit conventional 

geometries as a particular case and clearly separate 

exterior and interior contributions. In fact, the isotopies 

of conventional space-time geometries are based on the 
Iifl ing of the conventional (3+ l)-dimensional unit I = 

diag. (J, 1, 1, () into the most general possible (3+ ()

dimensional isounits of Kadeisvill Class I [81 (sufficiently 

smooth, bounded, nowhere singular, real valued, 

symmetric and positive-definite) with non linear and 

nonlocaHntegral dependence on coordinates x, their 

derivatives X, X, " ., with respect to an independent 

variable and any needed add itional varIable. In their 

diagonal form, the isounits can be written 

(1.2) 

2 2 2where diag. ( n l- , n2- , n3- ) represents the 

nonspherical -deformable shape of the test body 

considered, n.-2geometrizes its density, and t(x, x, x, . ..l 
represents the nonlinear, nonlocal and nonhamiltonian 

interactions (see [241 for details, applications and 

verifications). Conventional action-at - a-dlstance 
interactlons are represented via the conventional 

potential. 

In this way, the isogeometries recover identically 

and unambiguously the conventional geometries of the 

exterior problem in vacuum ror 1 • I and permlt a clear 

separation suitable for experimental verifications 

between exterior and interior contributions via the 

deviation of 1 from 1. 

The first isogeometnes were constructed by this 
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au thOr [1 8,19,201 with isotopies based on the degree of 

freEdom of the con ven tiona I multiplication. The main 

characteristic of these isotopies 15 t hat the original 

geometric axioms are preserved on isospaces over 

Isofield, as well as on their proJfction inta the original 

space over ordinary rie lds. 

In this paper we introduce, apparently for the first 

time, isogeometries constructed via the isodifferential 

calculus. As we shall see, the latter are more general 
than the former because the original geametric axioms 

are indeed preserved in isospaces over isofields, but not 

necessarily in their pro¡ection in the original spaces 

over ordlnary fields. 

The isoeuclidean geometry has been studied in 

detail in monograph [231. Its reformulation in term of 

the isodifferential calculus is elementary and Implies no 

majar st r uclural change. T he isominkowskian 

geometry can be ablained as Ihe tangent geamelry ta 

Ihe isoriemannian one. We shall Iherefore limil 

ourse l ves to Ihe Sludy of Ihe /sosymplectic and 

isonemannian geometries based on the isodifferen tial 

calculus. 

Our analysis is mainly local, awing lo Ihe need lO 

ident lfy geometries which are specifically applicable in 

tlle given inerlial frame of Ihe observer (see Paper lIl. 
AbstracI, coordinate-free treatmenls are tllerefore 

merely indicated . AII resulls o.f this paper can be easily 

eXlended la isounils o.f Kadelsv il l Class 11 (same 

property of Class 1 except thal 1 is negative--Oefinile) 

and of Class 111 (union of Class 1 and 1!l. However the 

extension lo Classes IV (Class 111 plus singular isounils) 

and V (Class IV plus arblt rary isouOIts, including 

discantinuous isounils) requires speclfic studies. 

The reader sllould be aware tha! the isogeomelrles 

o.f Class 11, called isodual isogeometries, have resulled 

l o be particularly suited for a novel treatment of 

antimatter [241. In fact, the operator formulation of 

the ant iautomorphic map 

1d1>0 = -1 < O, 

called by this author isoduality, is equivalent to cllarge 

conjugation. This has allowed the initiation of: novel 

studies, such as Ihe first astrophysical studies beginning 

al t he classical level and then persisls under 

isoquantization (Paper lO of stars, galaxles and quasars 

as made-up ent irely of antimatter; experimentally 

verifiable studies af antigrav lty; and others [241. By 

comparison, conventianal methods permit Ihe 

treatment of antimatter only at the level of second 

quantization, as well known. 

The isogeomelries of Class 111 have slimulated a 

new cosmology in which the Universe can be made up 

of equal distributions of matter and antimatter willl 

intriguing features, such as nuil total energy, nuil lotal 

time, etc. [24J (because isodual isofields [22L having a 

negative-definite norm, imply physical characteristics 

of antimatter opposite to those of matler, resulting in 

null total characteristics for equal distribution o.f 

matter and antimatterl. 

F'inally, the reader should be aware that tlle 

isogeometries of Kadeisvili Class IV have resulted to be 

particularly significant for further advances o.n 

gravitational singularities for both matter and 

antimatter. In fact, conventional (3+1)-dimensional 

Riemannian metrics g(x) always admit the factorizalion 

of the Minkowskian metric, 

g(x) = t gr(X) 1), TI = diag. (J, 1, 1, -!l. (¡ .4) 

Gravitalional horizons (singularilies) are then given by 

Ihe zeros of the isotopic element t g (¡sounil 19t) 

Gravitational horizons: Tgr(x) = O; Gravitational 

singularities: 

(¡ .5) 

But the aboye represenlation has no effective 

contribulion from the inlernal nonlinear, nonlocal and 

nonlagrangian effects. The isoriemannian geometry 
Iherefore permits the enlargement of Ihe definition of 

gravllalional horlzons and singularities for Ihe inclusion 

of interior non linear and non local effects which is 

achieved via the zeros of Ihe general isotopic elements 

and isounits, respectively, 

Gravilalional horizons: T gr(x, X. x. ...l =O ; (1.5al 

Gravitational singularities: 19r(x, X. x. ...} = O. (1.5b) 

The lalter comments have been made in the Ilope of 

stimulating mathemalical studies on Ihe isotopies or 
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Kadeisvili Class IV which are vastly un\::nown at this 

wrltlng. 

One should also note that the isotopies have 

permltted the construction of the universal symmetry 

for all possible (3+ I)-dimensional, exterior and interior 

gravitation, called isopoincare' symmetry P(3.1), and that 

symmetry has resulted to be locally isomorphic lO lhe 

Poincare' symmetry P(3. J) [24] (see independenl review 

[9D. The isosymmetry is again constructed via the 

Minlw wsl<ian factor ization of any given exterior or 

Interior metrie g = t gr'" and the reconstruction of the 

conventional Poincare' symmetry with respect to the 

isounit 19r =19r-l. The local isomorphism P(3.Jl", P(3.¡) 

follows from the positive-definiteness of the isotopic 

elemen! t gr for all physical models of gravitation 

(oulslde the gravitational horizon). The universality of 

t he P(3.1) isosymmetry for all infini tely possible 

gravitations follows from the unrestricted functional 

dependence or the isounit 19r(x, x, l(, .. .l. 
In turn, the achievernent of a universal symmetry 

for gravitation has stimulated numerous novel studies, 

such as a possible unification of relativistic quantum 

mechaníes and gravitation via the embedding of 

gravl tation in the unit of conventional theories, and 

others [241. 

Finally, the reader should remember from the 

Inlroductlon of Paper 1 that the isogeometries are a 

particular case of the genogeometries 16,231 (in which 

ease the totally symmelric character of the genometrie 

15 relaxed) and that, in turn the genogeometries are a 

particular case of the multivaJued hypergeometries (jn 

which Ihe unit can assume an ordered set or valuesL 

2. Isosymplectic geometry. 

We identi fy in this section the isotopies of the 

symplectic geometry, caUed tsosymp/eetie geometry 

tor short, as the geometry underlying the isohamilton 
equations and related Lie-isotopic theory of Paper 11. 

These isotopies were first studied by this author in rer. 

[191, then sUbJected to deeper studies in subsequent 

papers and in monograph [231 via the lifting of the units 

and of the conventional associative product. The 

formulation of the isosymplectic geometry based on the 

isodlfferential calculus is presented here for the first 

time. 

Unless otherwise stated, all quantities are assumed 

to satisfy the needed continuity conditions, e.g., of being 

of class tOO and all neighborhoods of a point are 

assumed to be star-shaped or have an equivalent 

topology. For a presentatl on of the conventional 

symplec tic geometry we refer to [1 1, while 

comprehensive Iileralure In lhe field is available in rer. 

[161 and it is omitted here for brevity. 

Let M'(f:) = M( f: (,~,Jt) be an N- dimensional Tsagas

Sourlas isomanifold [20,3IJ modif ied according to 

Definition 3 of Paper I on the Isoeuclidean space f:(x,~,Jt) 

over the isoreals Jt = fHi'l,+,xl with NxN-dimensional 

isounit 1 = Oit, i, j = 1, 2, .., N, of Kadeisvili [si Class I and 

local chart x = (Xl'l A tangent ísovector ~(m) at a point 

m€ M(E:) is an isofunction defined in the neighborhood 

~(m) of m with values in Rsatisfying the íso/ínearity 

eondítíons 

(2.¡) 

for all t , g € ~(f:) and á, a € R, where x is the 

isomultiplication in I't and the use of lhe symbol ' 

means that the quanti lies are defined on isospaces. 

The colleet ion of a1l tangent isoveclors at ro is 

called the tangent isospace and denoted TM(f:). The 

tangent isobundJe is the 2N-dimensional union of all 

possible tangent isospaces when equipped with an 

isotopie structure (see below). The cotangent iSObundle 

'r~(E:) is the dual of the tangent isobundle and it is 

defíned with respect to the isounit 12 = diag. 0, t) = dlag. 

(t- I, 1-1), with the understanding pointed our in the 

preceding section that more general isounits of the type 

12 =diag. 0, W-l), W ?' 1, are possible because of the 

independence of xand p. 
Let f¡ = (ff-J = (xk

, ~J, IJ. = J, 2, .... 2N, be a local 

chart of t*M(ü An isobas is of T*M(E:) is, up to 

equivalence, the (ordered) set of isoderivatives ~ = 
(~ldff-J =(t~"a/ab''l. A generic elements ~ € 'rM(f:) can 

then be written ~ = ~~m) ~ldfj! 
The fundamental one-iSOform on T*~(t) is given 

in the local chart ó by 
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The spaee rM(E:), when equipped with the aboye one

form, is an isobundle denoted T¡"M(Ü The isoexael, 

nowhere degenerate, isosymplectic two-iso(orm in 

isocanonical realization is given by 

k= 2 ax " Bf\ = lk, di '" 1'ki dp¡ • dxk 
Á df\ E W 

(2.3) 

The isospace r~(f:), when equipped with the aboye 

two-isoform, Is an isosymplectic isomani(old in 

isocanonical realization denoted T2"M("f:l. The 

isosymplectic geometry is lhe geometry of lhe 

isosymplectlc isomanifolds. 
The last identity in (2.3) show that t h e 

isosymplectic isocanonical two-iso(orm W(ormaJJy 

coincides with the conventional symplectic canonical 

two-form w. The abstraet Identity of the sympleetie 
and isosympleetic geometries is then evident. This 

iIIustrales on geomelrie grounds Bruck's [31 slalemenl lO 

lhe effeel lhal "lhe isolopies are so natural to keep in 

un-notieed". However, one should remember that the 

underlying metrie is isotopie, that f\ =l'k l>~ where PI is 
the variable of the eonventionaJ canonlcal realizatlon of 
the sympleetie geometry. and that identity (2.3) no 

longer holds for the more general isounits 12 = diag. 0, 
W-'). Also, lhe sympleclie geomelry is local-difrerenlial, 

while the isosymplectie geometry admits non local

integral lerms when embedded in the isounit. 

A vector isoneld ~(nl ) defined on lhe 
neighborhood N(m) of a paint m E T/M(f:) with local 

eoordinates o is called isohamiltonian when there 
exists an isofunelion Aon ~(m) over Il. such that ~ J tÚ 

= - aA. Le., 

which are equivalent to isohamilton equations (11 .04. lOa). 

The isosymplectic geometry is therefore the geometry 

underlying the isohamiltonian mechanies of Paper 11. 

It 15 5traighforward to construet Isoforms ~p or 

arbltrary order p. The proof or the following property 

then follows from the properties of the ísodírrerential 

calculus. 

Lemma 1 (Isopoincare' Lemma) 

Under the assumed smoothness and regularity 

conditions, isoexact ¡riso(orms are closed, i.e., 

a~p = a ( a4>p_¡) • o. (2.S) 

tor the two-dimensional case (see, e.g., [lsl or [17D, 

the eonventional Poinearé lemma is known to provide 

the necessary and surrieient eonditions in geometrie 

form for the contravariant tensor <.JIv = [(waet¡PV to be 

Lie, Le ., fo r braekets (11 .3.9) to satisfy the Lie algebra 

axíoms, where w~v is the canonical symplectie tensor. In 
this way, the symplectlc geometry is the geometry 
underlying Lie's theory. 

l'he isopainearé lemma for the two-dimensional 

case provides the neeessary and sufficient conditions 

for the same contravariant tensor <.JIv to be , thiS time, 

Lie-isotopic, J.e., tor the isobraekets (11.3.21 ) lo veri ry 

the Lie axioms in isospaees over isofields [231. The 

isosymplectie geometry is therefore lhe geomelry 

underlying the L e-Sanlilli isolheory. 
The general one-iso(orm in the local chart ó is 

given by 

(2.6) 

l'he general isosymplectic isoexact two-isoform In the 

same ehart is then given by 

o = a ( ~(o) aoV
) = o~V n, o,ao/ill, ...l af>l1 Á dov , 

(2.7a) 

~l\. ~~ all.v a~ 
~v=-=- - = t~a_--t2va_-. 

~ff- ~ov aoa aoa 
(27b) 

One can see that, while at the canonical level the exact 

the two-form W and its isotopic extension wformally 

coincide, thls is no longer the case (or exact, but 
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arbitrary t wo forms O and OIn the same local chart. 

Note that the isoform () is isoexact. () = aé.and 

therefore isoclosed, ao .. 0, in isospace over the isofield 

It However, if the same isoform () is projected in 

ordinary space and called o, it is no longer necessarily 
exact and, therefore, it is not generally closed, dO ;t O. 
These properties preve the following 

Lemma 2 (General Lie-SantiUi Brackets) 

LeC O = 0I1V dól1l\aov be a general exact two
isoform, O = aé = d(ft

l1
aól1l. Then the brackets among 

sufficient/y smooth and regular isofunctions Mo) and 

9(0) on t 2°M(f:) 

aA de 
[ Á, ti 1 = --Ql!V-- , (2.8a) 

1501. dOI1 dOV 

(2.8b) 

satlsfy the Lle-Santilli axioms in isospace (but not 

necessartly the same axioms when projected in 

ordinary spaces). 

An important property of the symplectic 
geometry is Darboux's Theorem [51 which expresses the 

capability or reducing arbitrary symplectic two-forms 

to the canonlcal form or, equivalently, the reduction of 

BirKhoff 's to Hamilton's equations. (Paper I ¡) The 

following additional property completes the axiom

preserving character of the isotopies of the symplectic 

geometry. 

Tbeorem 1 (lsodarboux Tbeorem) 

2N- dimensional isocotangent bundle Tz"M(f:) 

equipped with a nowhere degenera te, exact, eoo two

isof orm O in the local chart ois an isosymplectlc 

manifold if and only if there exists coordinate 

transformations & -+ o' (o) under which O reduces to 

the isocanonicallwo-isoform W. i.e. 

dOI1 dbv 

-- Ó (f¡(b'll Wajl ' (2.9)
l1v

~o· a db' ~ 

PROOF'. Suppose that the transformation &-+ &ib) 
occurs via the following intermediate transform Ó ... 
0't6) -+ 0'(b'1b)). Then there always exists a transform O 
-+ bu such that 

(2.10) 

under which the general Isosymplectic tensor 0I1V 

reduces to the Birkhoffian form when recompute in the 
ochart 

dól1 dbv altv _ a~)
- óIlJf¡(o·)) - = (

bU a dO· p lb" aoa aov lb

= O (2.11) 
ajl lb" 

The existence of a second transform b" -+ D' reducing 

0ap to wajl is then known to exist (see, e.g ., [1,15,17]). This 

proves the necessity of the isodarboux chart. The 

sufficiency is proved as in the conventional case. Q.E.D. 

The isotopies of the remaining aspects of the 

symplectic geometry (Ue derivative. global treatment, 

etc.) can be constructed along the preceding lines and 
are omitted for brevity. 

Remark 1. The sympleclic geometry In canonical 

realization can geometrize 10 the given b-chart only a 

subclass of Newtonian systems, namely, conservative 

sysl ems plus a restr icled class of nonconservative 

systems called nonessentially nonselfadjoinl [151. The 

remaining systems can only be geometrized via their 

representation with respecl l o an arbitrary symplectic 

two-form and its reduction to the canonical form via 

the Darboux's transforms. However, the Darboux 
transforms are nonllnear and therefore, as recalled in 

Paperll , they cannot be realized in laboratory and 

imply the loss of conventional relativities because of 

the loss of the inertial character of the original frame. 

Remark 2. The direct universallty of the 

con ven liona I symplectic geometry for t he 

characterization of all possible local, analytic and 

regular Newtonian systems (universality) in the frame 
of the experimenter (direct universality), was proved in 

ref. [171 via the use of the general one-forms on the 
ordinary cotangent bundle T"M(E) =T"M[E(x,8,R)] in the 

loca I realization 

e '" ~(b) dlfl, (2.12) 
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with corresponding general, exact, symplectic two-fonn 

(2.13) 

where 0I'V is the Birkhoffian tensor (11.1.1 n.A vector 

f ield X(m) in the neighborhood of a point m E rM(E) 

whlch is not Hamiltonian in the given chart b results to 

be always Bír l<.hoffian in the same chart, i.e., when a 

function H on N(m) such that XJw =-dH does not exist 

in the b-char t, there a1ways exist a Birl(hoffian tensor 

q)b) such that X-'O =-dH. The maps within a fixed Ir

chart e -+ e and w -+ o were identífied In ref. 12S1 as a 

(¡rst form of isotopies of the symplectic geometry in 

canonícal realization. 

Remark 3. Despíte the achtevement of (he aboye 

dlrecl universality, the symplectic geometry continues 

to be insufficient for recen! applications owíng to íts 

local-dífferential character. 

A second isotopy of the symplectic geometry for 

the characterízation of nonlocal, integral terms was . 

submltted by Ihis author [l sl vla the IIning of the unít 
and of the associative product wh i le preservíng the 

conventional differential calculus. For instance, the 

isocanonical one-form on T·~(~) In the aboye 

formulation ís given by 

(2.14) 

and, as such, it coincides with one-lSoform (22) except 

for the replacement of the isounit with the isotopic 

element. The isotopic degrees of freedom of the product 

of the former are then transferred to those of the 

dirrerentials in the lalter. However, two-isoforms result 

to be dlfferent in the two approaches, as one can verify 

(see reL [23l Sect. 5.4 for brev ityl. 

The aboye second isotopy of the symplecliC 

geometry preserves all conventional axioms, including 

Ihe Poincaré Lemma, the Darboux's Theorem, etc. Also, 

the latter theorems hold in both tsospaces as well as in 

their projection into the conventional spaces. In 

particular, the generalized brackets were Lie-isotopic in 

both isospace and in their projection in the conventional 

space. 

The drawback of the aboye isotopy is that tt 

implies Ihe 1055 of the basic un it 12 in the transition 

from one- to two-isoforms evidently due to the use of 

the conventional calculus (see also reLs [231 Sect. 5,4 for 

brevity). In turn, l he lack of invariance of the unit has 

serious problematic aspects of physical character, e.g., 

in the conduction of measurements. 

In this section we ha ve introduced the th ird 

isotopy of the symplectic geometry studied by this 

author, this ti me based on the isodifferential calculus. 

Its main advantages over ~Ile preceding isotopies is Its 

remarkable simplícity, as well as the preservation of the 

basic unit 12 = diag. 0, 1') for isoforms of arbit rary 
order, thus permitting its cons istent application for 
measurements. Another advantage is that lhe 

convenCional coordinale-free lrealmenl of t he 

sympleclic geometry can be preserved in ils enlirely 

for the characlerizalion of the isosymplectic geomelry 

submitled in lhis seclion and merely subjected lo a 

more genera l realization of the symbols such as dx, dH, 
etc. In di fferent terms, the contemporary coordinate

free formulation of the symplectic geometry(as 

available, e.g., in [ID can be left completely unchanged 

for the characterlzation of the covering Isosymplectic 

geometry, aM merely subject the isodifferentials to a 

more general reallzation. 

Remark 4. The isosymplectic geometry of Ihis 

sectian is par ticularly suited for the isotopies of 

symplectic quantlzation first studied by Lin (1 1) and 

then treated In [241. For instance, the canonical two

fonn wcan be re-interpreted as the isofonn, W= w, the 
curvature V = wfl- I, fl = \, is then automatically re

interpreted as the isocurvature ~ = wl' etc. (see rer. [24l 

Ch. 2 for details). 

As a result, the entire formalism of symplecUc 

quantization admits a unique and unambiguous isotoplc 

interpretation without any maJOr reformulation. It then 

follows that hadronic mechanics of Paper II 15 indeed 

the unique and unambiguous operator image of lhe 

isohami/tonian mechanics.These i sotopies ar e 
significant for the study of nonlocaHntegral and 

nonhamiltonian interactions in particle physics, 

superconductivity and other fielm. 

Remark 5. The nonlinear, nonlocal and 

noncanonical character of the isotopies is evident from 

the preceding analysis. It is important to point out that 

linearity is reconstructed in isospace and called 

Isolinearily, as shown in Eq. (2.1l. Locality is equally 

reconstructed In isospace, and called iSolocallty, 
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be<:ause one- and two-isoforms are based on the local 

isodifferentials ax and af>. Simi larly, canonlcity is 

reconstructed in isospace, and caHed isocanon lciC y, 

because lhe canonical form Pkdxk Is preserved by lhe 

isotopic rorm p;'dkk in isospace. The nonlinear, nonlocal 
and noncanonical character of isotopic lheories solely 

emerge when they are projected in the original spaces. 

Numerous other reconstruction of original 

properties in isospaces occur under isotopies. A$ an 
example, il is easy to see Ihat isogroups are 

characterized by nonunitary transforms In an ordinary 

Hilbert space X, i.e., for U = exp(ifl'T't ), we have UUf ¡rL I 

owing to the noncommutativity of A and 1'. However, 

lhese transforms do verify the axiom of unilarity when 

wrltten In the isohilbert space X (Paper 10. In fact, all 

nonunitary operators U can always be decomposed in 

the form U =Ot1/ 2, yielding the isounitary la w 0-01 = 
oto1'"1 = 01-0. 

The latter point lIIustrates the lact of equlvalence 

between conventional and isotopic lheories which are 

connected at the classical level by noncanonical 

transforms and at the operalor level by nonunitary 

transforms (see [241 for details). 

3. Isoriemannian geometry. 

The Riemannian geometry [141 is exactly valid ror the 
exterior gravitationaI problem in vacuum, because an 

extended body moving in the homogeneous and 

lsotropic vacuum (such as Jupiter In its planetary 

trajectory around t he Sun) can be effecti vely 

approximated as a massive point, thus prov iding the 

physicai foundations of the local-differential character 

of the geomelry . 

As outlined in Section J (see [241 for details), 

the Riemannian geometry is only approximately valid 

for Interior gravitational problems (such as a space

ship during re-entry in our inhomogeneous and 

an isotropic atmosphere) because the shape of the txxly 

consldered affects its trajectory and the local

differential treatment is no longer exact. 

Numerous deformations-generalizations of lhe 

Riemannian geometry have becn studied during in this 

century to represent more general conditions, but they 

generally imply the abandonment of the space-time 

Riemannian and, therefore, of the Einstelnian axioms In 

favor of yet un-identif ied axioms. 

This author submitted in 1988 [201 (see [24~ Ch, 9, 
for a comprehensive presentation) lhe isotopies of the 
Riemannian geometry, called iSoriemannian geometry, 
to achieve the desired representation of arbitrary 

nonlinear and non local effects while preserving the 

original Riemannian and Einsteinian axioms. The 

isogeometry was constructed via the isotopic Iifting of 
the unit and of the conventional associative product of 

the original geometry while preserving the conventional 

differential calculus. The emerging generalized 

geometry did result to be an isotopy of the original one. 

that is, preserving the original Riemannian axioms, 

while permitting the representation of nonlinear and 

non local effects via their embedding in the generalized 

unit. However, the use of the conventional differential 

calculus implies the lack of invarlance or the basic 
isounit, with consequential problematic aspects for 

measurements indicated earlier. 

(n this section we shall present, apparently for the 

fi rst t ime, the isoriemannian geometry formulated via 

the isotopy of the d/fferentia l calculus and show that 

the latter formulatlon is more conducive to a single, 

unified, abst ract formulation of the geometry with 

different realizations, the conventional local

differential one ror the exterior problem in vacuum and 
the more general nonlocal-integral isotopic one for 

interior problems withln physical media. Our study will 

be again in local realizations representing the fixed 

inertial frame or the observer while all abstract 

treatments are len to the interested reader. tor the 

conventional case we assume all lopological properties 

of Lovelock and Rund !121of which we shall preserve 

the symbols for clarity in the comparison of the results. 

tor the isotopic case we assume the topological 
properties by Tsagas and Saurlas [30,311 implemented as 

per Definition 3 of Paper I which are also tacitly implied 

hereon. Our presentation is made, spec lfically, for the 

(3+ lh1imensional space-time, the extension to arbitrary 

dimensions and signatures being elementary. 

Let ~ '" ~(x,g,R) be a (3+I)-dimensional Riemannian 

space over the reals R(n,+,x) [121 with local coordinates x 

= (x¡¡) = (r, x"l, x· =cot, J.1 = 1, 2, 3, 4, where Co is the speed 

of light in vacuum, nowhere singular, symmetric and 

real-valued metric g(x) = (g¡¡) with tangent Minkowski 
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Mink.owsk.i space M(x;rl,R) wíth metric TI = diag. (l, 1, 1, -

Il .The interval the familiar expression x2 = x~g~v(x)XV E 

R wtth inf initesimal IIne element ds2 = dx~g~v( x)dxV and 

related formalism (covariant derivative, Christofrel's 
symbols, etc. [ISI. 

Let ~ = ~(x,g, ft) be an isotopie image of gt, ealled 

isoriemannian space, first introduced by this author in 

rer. (181of 1983, with local coordinates x=(~) (= (x~}) 

and /SOmetric g= fg, where l' = (1'/) is a nowhere 

singular, symmetric, real valued and positive-definite 

4X" matrix with COO elements. The isospace ~ is defined 
over the isoreals ~ = ~(íl,+,x) with isounit 1 = (I~J =1'-1. 
The li ft ing ~ -+ " leaves unrestricted the functional 

dependence of the isounit/isotopiC element, which can 

therefore depend in an arbitrarlly nonlinear and 

nonlocal-integral way on the coordinates X, velocities v 
= dx/dT, accelerations a = dv /dT, and any needed 
addlt ional quantity of the interior medium, such as 
denslty ~, temperature T, etc. By recalling that the 

original unit or ~ Is I = diag. (1, 1, 1, 1), the Iifting '1 -+ 3\ 
is characterized by [23,241 

1 = diag. (1, 1,1, 1) -+ 1(x, v, a. Jl., T,.J =1'-1, (3.1a) 

g(x) - g()c, v, a. Jl., T, ...} = l' g . (3. lb) 

We then have the isoline e/ement 

"2 _ [:.u" "" ' ) ~ VI1'"x - A: g~vX, V, a, Jl., T, ..• X E: 1\ , (3.2) 

with infinitesimal version 

(3.3) 

The capability of representing arbitrarily nonlinear and 

nonlocal effects of the interior problem as well as 

inhomogeneous and anisotroplc media is therefore 

embedded ab initlo in the isoriemannian geometry. 

The isonormal coordinates y occur when the 

isometnc gis reduced, not to the MínKowski metric 1'). 

but rather to its isotopic image, l.e, gx- ify = 1'yTJy and, 

as such, they are the conventlonal normal coordinates . 

(principie of isoequivalence). In different terrns, the 

correct tangent space is not the conventional space 
M(x,n.Rl, but the isominkowskian space ~(X:,f¡,Rl first 
submitted in ref. [251. In particular, we have the 
following 

Lemma 3: 

The isounit and re/atoo isotopic e/ement are (he 

same for txJth the isoriemannian spaces and its rangenr 

isominkowskian spaces. 

Under these conditions, the isonormal coordina tes 

only reduce the g-component in g = tg to lhe 11

component of ~ = 1'1'1. As a result isonormal 
coordina tes coincide with the conventional normal 

coordina tes. 

It is easy to see that, despite the arbitrary 

functional dependence of the isometric g, all infiniteJy 

possible isotopic images 3'\( ic ,g,~) of a Riemannian 
space ~(x,g,R) are locally isomorphic to the lalter, I.e., 

for each glven metr lc g, " .. ~ for aH infinitely possible 

1 of Kadelsvili's Class 1. This is first due to the 

preservation by 1 of the axioms or 1, as a result or 

which the n eld R and its isotopic image ~ lose any 

distinction at the abstraet level [22J. Second, the local 

isomorphism " .. ~ f ollows from the ract that, In 

conjunction with the derormation of the metr ic 

elements g~v - gllv =l'~Clgavo the corresponding unit has 
beeo deformed by the Inverse amount, I~a -+ 1~a = 

(1'~a¡- I, thus preserv ing the original geometr lc 

characterlstlcs. lo particular, the isospace ~ is 

isocurved, that is (un li~e the case for the isoeuclidean 

spaces), curvature exists in the original space aod 

persists under isotopy. 

To have an idea of the various applications under 

study with isoriemannian spaces. the diagonal isotopic 

element 

2 2l' = diag. (n l- , 02-2, n3- , n.-2) , ~ > O , m = 1,2, 3, 4, 

(3.4) 

permits the representation of the locally varying speed 

e = co/n. of electromagnetic waves within physical 

media, which occurs via the fourth component of the 

isoline element 

ic4 g.. x· = t d4t, T, ...l g..(x) t , c = ca I n.x. m, T, .J 
(3.5) 

where g ... is the ordinary metric element and n. is the 

familiar index or refraction. This permits a 

gravitational treatment of the locally varying speed of 
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IIght in interior conditions. 

As an example, light propagat lOg in our 

atmosphere has a dependence on the density, and then 

assumes yet different values when propagating in 

water, glasses¡ etc, It i~ evioent lhat the repre5entation 
of [he locally varying speed or light is not possible with 

the Riemannian geometry or with its tangent 

Minkowskian geometry. Also, the decrease of the speed 

of light within inhomogeneous and anisotropic media 

has novel effects, such as a shi ft of Iight frequency 

toward the red, which cannot be predicted via the 

Rlemannian or Minkowskian geometr ies, but which is 

quantllatlvely treatable in accordance wi th available 

experimental data via the isogeometries (241. 

The representation technically occurs via the 

JSOlight cone as~ =ax~~vaxv = O whlch is the Irnage in 

isospace or Ihe deformed Iight cone in our space-tlme, 

as generated by a locally varylng speed of Iight. In a 

way similar to the fact that Ihe isosphere is a perfeet 

sphere In isospace (Paper 1), the isolight cone is a 

perfeet cone in isospace (see rer. [24L Ch. 8, ror detalls). 

Th is occurrence is nol a mere mathematical curiosily 

because It Is important ror numerical appllcations, such 

as Ihe correel calculations of gravitalional horizons. In 

ract, the region oulside Ihese horizon is not empl y, but 

fl lled up Instead by very large and hyperdense 

chromospheres where 1I is well known that the speed of 

light 15 locally varying with the density, temperalure, 

etc., thus preventing Ihe use of the conventlonal Iight 

cone. Note that the conventional exterior motion In 
vacuum Is a particular case or the isoriemanman 

geometry occurring for 1 = 1. 

In Ihe fi rst rormulation or the isoriemannlan 

geometry [20L dirrerentials or contravariant isofields ~ 

on ~ where defined by d~ = (a~)odx = (a~~) l'v~dxv ¡ti dX 

= (a~X)dxl1 , a~ = a/a# The isodirferential calculus allows 

us to introduce the following alternative definition 

(3.6) 

namely, isodifferential of isovector fields coincide 

wJth ordinary differentials. 

The /socovariant differential can be defined by 

(3.7) 

with corresponding isocovariant derivative 

(3.8) 

where the isochristoffeJ's symbols are given by 

tajly = 1 ( da gSY + dI' gaa - da ga.y) = r~ , (3.9a) 

.... ~ =:..so l" = l" ~g llP - I ( g )-\ fl!> (3.9b)AI a y ~. . apy ya' ~v, 

and one should note the abstract identity of the 

conventional and isotopic conneetions. The extension to 

covariant isofie lds and covariant or contravariant 

tensor isofields is consequential and it is hereon 

assumed (see also l23D. 
The repeti tion of the proof of [2L papo80-81, yields 

to the rollowing: 

Lemma 4 (Isoricci Lemma) 

Under the assumed conditions, the isocovariant 

derivatives of all isometrics on isoriemannian spaces 

are identically null, 

g~ryEO, a, 13, y= 1.2.3,4 . (3.10) 

Despite the slmilarities with the conventional case, 

the lack of equivalence or lhe Riemannian and 

isoriemannian geometries can be illustrated via the 

isotorsion [20J 

-P-"'P -"' P (3. 11)Tay - la y I ya ' 

which is identically null for the lsoriemannian geometry 

here considered, but its projection in the original space 

!H is not necessarlly null. Interior gravitational models 
treated with the Isoriemannian geometry are therefore 

theories with null isotorsion but generally non-null 

torsion as requested for a realistic treatment of 

Interior problems. 

The occurrence also i1lustrates the property, 

verified at subsequent levels later on, that departures 

from conventional geometric properties must be 
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studíed In the projeClJOn or Isoriemannian spaces in the 
orig inal spaces because, when treated in their respective 

spaces, the two geometries coincide. Stated in different 

terms, when using the conventional Riemannian 

geometry, exterior gravitation can only be studied in the 

spaces !JI. On the contrary, when using the isogeometry, 

Interior gravitation can be studies in two different 

spaces, the isoriemannian spaces !fI and their projection 

into !R. 

Another way of identify ing the differences 

between the Riemannian and isoriemannian geometries 

is by considering the following isotopic Newton 

equations in isoriemannian space 

av~ 
--+ t aJJlx, v, a. .J O, 
a.¡. a.¡. a.¡. 

1

(3.12l 

where v= aX/aT = 1°odx/dT, T is the proper isotime and 
0

0 the rela!ed isounit. The preceding equations must 

then be compared with the conventional equations 

dv~ dx" dxY 

- - + t aJJy(x) - - - - O . (3.13) 

Os ds ds ds 

It is evident that the lalter equations are at most 

quadratic in the velocities while the isotopic equations 

are arbitrarily non linear in the velocitles, as it occurs 

already in a flat space (Paper Il. Also, the latter 

equations are local-differential while the former admlt 

non locaHntegral terms. 

We now introduce: the isocurvature tensor 

,, ~ _ .... ,.. ~ _ .... ,.. ~ + "'~"' p _"a"p.
n a yS - 08 I a y 0y I a 8 I P 8 I a y I P Y I a 8 ' 

(3.14) 

the isoricci tensor 

t\ - t)~ . (3.15)n"v - ''ji ~, 

the isocurvature isoscalar 

(3.16) 

the i.soeinstein tensor 

(3. 17) 

and the isotopic isoscalar 

(3.18) 

the latter one being new for the isoriemannian 

geometry (see below). 

Tedious bu! simple calculations then yield the 

following basic properties of the isoriemannian 

geometry: 

Property 1: Antisymmetry of the last two 

indices of the isocurvature tensor 

t\ ~ _ _ t\ ~ . (3.19)na yS - na Sy , 

Property 2: Symmetry of the first two ind/ces 

of the isocurvature tensor 

(3.20) 

Property 3: Vanishing of t he tota/ly 

antisymmetric part of the isocurvature tensor 

t\~ +t\~ +t\~ -O. (3.21)na y8 ny Sa n8 ay , 

Property 4: lsobianchi identity 

t)~ +t\a +I'l.~ -O · (3.22)'!aysfp n apy f8 a8pfy , 

Property S: Isofreud identlty (see Freud [61 for 

the original form, Pauli [131 for a subsequent treatment, 

Rund [151 for a more recent presentation and Santilli [23l 
Ch. 5, for a general review) 

sa~ = I'l.a~ =- t Ba~ I'l. - t 8a~ é = oa~ + d ~ap~ ,p 

(3.23) 

where é is the ¡sotopic isoscalar (7.18) and 

dé 
-~Oa o =-, ----g r~' (3.24a)

" ~~ 
"O fa 

Rev. Téc. lng. Univ. Zulla. Vol. 19, No. 2, 1996 



81 l sotopic llfting of dlfferential geometrles 

+(oPagay - Bad Py)t/s + ~Y !'aay - gay !,aPyl. 
(3.24b) 

Note the abstract identiCy of the conventional 

and isotopic properlies. This confirms tha! the 

conventiona! and iso!opíc geome!ries can be trea!ed a! 

the reallzation-free leve! vía one single se! ofaxíoms, as 

desíred . 

The repetítion of the proof of the Theorem of [1 2l 
p. 321, leadS to the followíng property first ídentified in 

1988 [20J(see also [23]) and whích is here recovered vía 

the ísodífferential calculus. 

Theorem 2 (Fundamental Tbeorem for 
Interior Gravitation) 

Under the assumed regularJty and conlinuily 

cond/l ions, the most general possible isolagrange 

equations t:: a~ = O along an actual path Po on a (3+1)

dimensional isoriemannian space sa tisfying the 

propert ies: 

¡) Symmetry condilion 

(3.25) 

2) Contracted isobianchi identity 

(3.26)t::~r~ • O, 

3) The isofreud identity 

oaa + dp ~o(1Pa ' 

(3.27) 

are g/ven by 

(3.28) 

where gl = (det g)1 /2, a and {3 are constants and 

()a~ is a source tensor. For a = I and ~ = O the 

interior isogravitalion field equations can be written 

(3.29) 

where laa is a source tensor and -[aa is a 
stress-energy Censor. 

Note the appearance in Eq.s (3.29) of the isotopic 

isoscalar é in !he I.h.s and of source terms in the r.h.5~ 
the latter ones originating from the ísofreud identity. 

Addítional studies not reported here for brevíty (see 24l 

Ch . 9) have shown tha! the the !ensors la~ is nowhere 

null and of first order in magnitude. This i1lustrates the 

principie of ísoequivalenee aeeordíng to whieh under 

the isonormal eoordinates the isometrie g is indeed 

redueed to the tangent isominkowski metrie ~ = TT), but 

the source 1~ cannot be rendered nul!. 

A vector isofield ~ on ~ is sald l o be transported 
by isoparalJel displacement from a point m(X) on a 

curve t on ~ to a neighboring point mile + ale) on t ir 

(330) 

or in Int~rated form 
. d~ alea 

~~(m') - ~(m) = J .m' -- --as . (3.31) 
m (¡Jea as 

The isotopy of lhe conventional case [12J lhen yield the 

following: 

Lemma 5: 

Necessary and sufflcient conditions for Che 

existence of an isopara lJel transport along a curve e 
on a (3+I)-dimensional isoriemannian space are that 

alJ the folJowing conditions are identicalJy verified 

along c: 

~ y, /) = 1,2.3, 4 . (3.32) 

Note, agaln, the abstraet identity of the 

eonventional and isotopíe parallel transport. Along 

similar Iines, we say that a smooth palh )ca on ~ wíth 
isotangent Va = ax/as is an isogeodesic when ít is 

solution of the isodif ferential equalions 

axa axY 

-=--+ f"~y-- -- = o. (3.33) 

as as 
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It is easy to prove the follow ing: 

Lemma 6: 

The isogeodesics or an ísoríemannian space ~ 
are the curves verifying the isovariational principIe 

Finally, w point out the property which is inherent 

In the notion of isotopies as realized in this paper; 

Lemma 7: 

Geodesic trajectories in ordinary space rema in 

isogeodesics In tsospace. 

For instance, if a circ le IS originally a geodesic. its 

image under isotopy in isospace remains the perfect 

circle, the isoci rcle of Paper [, and the same happens 

for other curves. As It iS the case f or all other aspects, 

the differences between a geodeslc and an isogeodesic 

emerge when projecting t he latter In the space of the 

former. [n fact, the projection o f the isocircle in the 

conventional space becomes an ellipse under l he assume 

topology (and can be a hyperbola w hen relaxing the 

positive-definite character 0[1) [231. 

We can say in figurative terms that interior 

physical media "disappearN under t heir isoriemannian 

geometrizatiOn, in the sense that actual lrajeclories 

under resistive forces due to physical media (whleh are 

not geodesies of a Riemannian space) are tu rned into 

isogeodesics in isospace wi th the shape of the geodesics 

in the absenee of resistive forees. This property is 

inherent in lhe very eoneeption of the isotopie Newton 

equations, e.g., In representation (3.14), and it is only re

expressed in this section in an isocurved space. 

[n 	 ummary, a basie question raised in this section 

is: why use in interior problems the Riemannian 

geometry with metric g(x) when the same axioms 

permit metrics g(x, v, a, ...l with a more general 

functional dependence in the velocities and other 

variables as needed for interior conditions ? In faCl , al 

the abstraet level we have t he identities [ -1, dx • aX. 
R(n,+,") .. fHñ,+,í<), and "(x,g,R) • !Í\(x,g,fl.) with 

eonsequential unique abstraet geometric axioms for 

both spaees !Jl and " . Within sueh a setting, !Jl emerges 

as a simpler reallza tion of the Ríemannian axioms, and 

~ as a more general realization. 
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