Rev. Téc. Ing. Univ. Zulia. Vol. 17, No. 1, 9-16, 1994

Atmospheric corrosion of steel and cooper in 9 zones of Falcon State

Alvaro Rincón, Mariela F. de Laguna, María Prato

Centro de Investigaciones Tecnológicas, Universidad Nacional Experimental Francisco de Miranda. Coro, Edo. Falcón

Abstract

In the state of Falcón, more than 680 Km of coastline and differing weather conditions cause severe corrosion problems. The selection and coating of materials, and maintenance programs are specified according to these atmospheric conditions.

A 5-year atmospheric corrosion study has been performed in 9 zones of the state. Bare 80 $\rm cm^2$ specimens of mild steel 1010 and 99.5% Cu were exposed. Atmospheric conditions and their influence on the corrosion process were evaluated in the study.

It was determined that atmospheric corrosion is most intense in Adicora; in Ricoa the least atmospheric corrosion was registered. Results confirmed that the high chloride concentration, humidity and dust in Adicora were determinants in the high rate of corrosion.

Key words: Atmospheric corrosion, map, chloride, sulfur dioxide.

Corrosión atmosférica del acero y cobre en 9 zonas del Estado Falcón

Resumen

El Estado Falcón con una extensión de costas de más de 680 km y una amplia variedad de microclimas, se caracteriza por poseer condiciones atmosféricas variadas, donde los problemas de corrosión son diversos y en algunas zonas muy graves. Estudios que generen conocimientos del fenómeno sirven de orientación en la planificación de obras industriales y particulares para especificar materiales, recubrimientos protectores y frecuencia de mantenimiento.

Un estudio de 5 años de evaluación en 9 zonas que abarcan los diferentes microclimas del Estado, fue desarrollado exponiendo en bancos de ensayos muestras al desnudo de acero SAE 1010 y cobre 99.5 % pureza, con un área de 80 cm² a la vez que se cuantificaban las variables climatológicas y agentes aeroquímicos de mayor incidencia en el proceso de corrosión atmosférica.

Los resultados muestran que Adicora es la zona más agresiva y Ricoa la de menor corrosión, lo que era de esperarse debido a los altos valores de polvo atmosférico, contenido de cloruros y humedad relativa registrados en la primera y valores mucho más bajos en la segunda.

Palabras claves: Corrosión atmosférica, contaminación, atmósfera poluída, mapa de corrosividad.

Introducción

El proceso de corrosión atmosférica está catalogado como un fenómeno netamente electroquímico, por lo que factores como el electrolito, el proceso anódico y el proceso catódico, guardan estrecha relación con la velocidad y cinética del proceso global.

Reacción Catódica

$$O_2 + 2H_2O + 4e \longrightarrow 4OH$$
 (1)

Reacción Anódica

 $M \longrightarrow M^{+n} + ne^{-1}$ (2)

de esta forma, para que el proceso se inicie y transcurra, además del metal expuesto, se debe

tener un sistema corrosivo con presencia de oxígeno y agua que sirva como electrolito conductor de la corriente eléctrica [1].

El proceso catódico depende de la cantidad de oxígeno, el cual nunca va a ser limitante, pero la cantidad de agua si, de forma tal que se puede decir que la extensión en la cual se da el proceso, depende directamente del tiempo que permanezca sobre la superficie metálica esa película minima de agua, cuyo origen puede estar en la hu-

medad atmosférica (humedad relativa HR), la lluvia, la nieve, el rocio, etc. La atmósfera puede variar mucho con respecto a la humedad, temperatura y contenido de agentes aeroquímicos, lo que hace que las velocidades de corrosión atmosférica varien considerablemente de unas zonas a otras, dependiendo de las características propias de la atmósfera y scan estos factores climáticos y de contaminación los que determinen el comportamiento de UNA atmósfera haciéndola más o menos corrosiva [2].

Mecanismo de la Corrosión Atmosférica [1,3]

El mecanismo de corrosión del hierro contempla un proceso catalítico de ataque, con formación de productos de corrosión de escasas o nulas características protectoras, en cambio el mecanismo de corrosión del cobre implica ciné-

ticas de ataque mucho más lentas, como consecuencia del carácter protector de los productos de corrosión y la ausencia de efectos catalíticos

Figura 1. Ubicación de las zonas de ensayo estudiadas en el Estado Falcón.

Figura 2. Fotografía mostrando los equipos y materiales de captación de poluentes en la atmósfera.

de los agentes aeroquímicos, que por el contrario se consumen en el proceso, dado que entran a formar parte de los productos de corrosión siguiendo el esquema general:

 $Me + SO_2 + O_2 \longrightarrow MeSO_4$ (3)

 $XMeSO_4 + Y(Me + H_2O + 1/2O_2) \longrightarrow$ $XMeSO_4.YMe(OH)_2$ (4)

En el caso específico del cobre las reacciones son las siguientes:

 $2Cu + 1/2O_2 + H_2SO_3 \longrightarrow Cu_2O + H_2SO_3$ (5)

$$2Cu_2O + SO_2 + 3/2O_2 + 3H_2O \longrightarrow$$

$$CuSO_4.3Cu(OH)_2 \qquad (6)$$

Con el SO₂ actuando en la primera fase de catalizador, lo que concuerda con la gran acele-

ración del ataque que provoca su presencia, a lo que suceden otras fases con un consumo continuo de SO₂ de formación de productos insolubles, altamente protectores como la pátina (Cu-SO₄.3Cu(OH)₂) que recubre la superficie del cobre al Gabo de Yarlos meses

Estaciones, Materiales y Métodos

Las zonas de ensayos se muestran en la Figura 1, donde además se específica el tipo de atmósfera que presenta cada una. Estas zonas fueron seleccionadas de acuerdo a su importancia, tipo de microclima y la existencia de una estación experimental de meteorología.

Los materiales utilizados acero SAE 1010 y cobre 99.5 % pureza fueron cortados en probetas de dimensiones 10 x 8 x 0.3 cm y un área de exposición aproximada de 80 cm². Las muestras fueron procesadas en el laboratorio antes y después de expuestas. Siguiendo los siguientes pasos: desengrasado, decapado, pulidas, pesadas y medidas. Las determinaciones de pérdidas de pesos fueron hechas por triplicado para cada punto y material.

Los valores de las variables climatológicas fueron suministrados en algunos casos por el Ministerio del Ambiente y los Recursos Naturales Renovables, Base Naval Juan Crisóstomo Falcón y en otros casos fueron medidas directamente en campo mediante termohigrógrafos y anemógrafos marca Lambrecht.

El contenido de agentes aeroquímicos en la atmósfera, cloruros Cl⁻, compuestos de azufre (sulfatación) y polvo atmosférico fueron determinados utilizando métodos normalizados y estandarizados de las normas A.S.T.M.

Para medir la sulfatación fue utilizada la bujía de plomo de acuerdo a la norma A.S.T.M. D-516 y expuestas en casetas especiales diseñadas para ello según la norma A.S.T.M. D-2010. La Figura 2 muestra detalles del método.

El polvo atmosférico o partículas sedimentables presentes en la atmósfera y su caracterización fue realizada según especificaciones de la norma A.S.T.M. D-1739, con la cual se determina el pH, peso total de polvo atmosférico, incluyén-

Material		Pérdida de Peso para el Acero SAE 1010 en [mg/año]				
Estación	Año 1	Año 2	Año 3	Año 4	Año 5	
Coro	427.6	1070.4 1072.4	3397.7 3703.7	2589.1	3871.7 4110.7	
Punto Fijo	4406.7	8484.8	9235.8	12956.4	Cital.	
	4639.5	8343.8	8400.3	12996.0	13244.5	
Pto. Cumarebo	1702.2	110 evaluada	9232.2 9439.5	5179.2 5041.2	6397.3 5837.2	
Agua Clara	541.4 591.4	1211.0 1344.4	1955.7 2228.7	2592.0 2242.4	1484.5 1574.0	
Adicora	83979.9 81785.1	109648.0 109796.0				
Tacarigua	1880.2 1895.9	3215.6 3186.8	6557.7 5716.2	7489.2 7498.4	no evaluada	
Ricoa	1081.6 1021.9	1611.2 1626.0	1899.3 1877.4	2859.6 2802.4	2812.0 2849.5	
La Enramada	76578.3 72572.1	90873. 1 90950.2	-	- 70	-	
Mene Mauroa	750.4 781.4	3032.4 3141.8	989.1 1095.9	5008.0 2166.4	no evaluada	

Tabla 1 Valores de Pérdida de Peso para el Acero SAE 1010

-Pérdida total a los dos años.

dose además la conductividad (norma A.S.T.M. D- 1125) y el contenido de Cloruros Cl⁻ (norma A.S.T.M. D- 512). La Figura 2 muestra los detalles del método.

Resultados y Discusión

Los resultados de pérdidas de pesos anuales para el acero y cobre expuestos se muestran en las Tablas 1 y 2. Un análisis de estos datos revelan que Adicora y La Enramada son las zonas más corrosivas de Falcón y Churuguara y Ricoa las de menor corrosividad para los dos materiales ensayados.

En el caso particular del acero SAE 1010, la diferencia de velocidad de pérdida de peso es marcada de una zona a otra, teniendo el caso de Adicora y La Enramada donde las muestras de acero fueron consumidas en tan sólo 2 años de exposición.

El cobre presentó un mejor comportamiento en la atmósfera falconiana, con velocidades de pérdidas de pesos bajas, encontrándose valores muy cercanos de pérdidas de pesos entre las zonas más corrosivas Adicora y La Enramada y las estaciones de Punto Fijo y en menor grado Coro, lo que se explica si se toma en cuenta la alta incidencia de viento y polvo atmosférico combinados (Tabla 3) que fueron medidas en estas dos últimas estaciones de ensayos, lo que genera un proceso de corrosión-erosión que des-

Material		Pérdida de P	Pérdida de Peso para el Cobre en [mg/año]			
Estación	Año 1	Año 2	Año 3	Año 4	Año 5	
Coro	80.6	250.7	532.6	744.6	823.9	
	52.1	249.7	504.7	726.6	940.3	
Punto Fijo	572.7	1059.2	1447.5	1561.6	2010.0	
	543.9	1024.4	1452.0	1597.6	1979.0	
Pto. Cumarebo	0.0	no	210.1	284.0	249.6	
	0.0	evaluada	209.6	264.5	224.3	
Agua Clara	99.0	180.4	213.6	220.0	227.0	
	100.3	186.2	219.3	220.0	226.5	
Adicora	789.1	1368.2	1691.4	2285.6	2818.5	
	792.4	1391.2	1621.8	2281.6	2958.5	
Tacarigua	249.7	402.2	449.4	476.8	no	
	266.6	404,2	453.9	515.6	evaluada	
Ricoa	105.2	251.2	254.1	274.4	195.5	
	110.6	254.6	264.3	275.2	167.0	
La Enramada	1108.9	1806.1	2133.4	no	no	
	1175.3	1836.1	2108.9	evaluada	evaluada	
Mene Mauroa	160.8	268.0	273.3	292.8	no	
	161.7	260.8	273.3	304.0	evaluada	

Tabla 2 Valores de Pérdida de Peso para el Cobre

truye la película protectora de los productos de corrosión del cobre.

La Tabla 3 muestra los valores de las variables climatológicas y agentes aeroquímicos medidas en los diferentes microclimas del Estado Falcón, los cuales se ha demostrado tienen una gran incidencia en el proceso de corrosión atmosférica. Un análisis de los valores registrados indica una total correspondencia entre los máximos valores de pérdidas de pesos y los valores más altos de contenido de agentes aeroquímicos cloruros y polvo atmosférico sedimentable combinados, a valores de humedad relativa 70 % (valor crítico para que exista corrosión) [4,5]. Una mejor visualización de lo expresado puede observase en la Figura 3 donde se muestran las sumatorias del porcentaje de incidencia de cada variable estudiada en el proceso global de pérdida de peso por ataque corrosivo de la atmósfera y donde Adicora y La Enramada representan las zonas de mayor corrosión.

La Figura 3 fue construida tomando en cuenta el efecto que cada variable ejerce en el comportamiento de la atmósfera sobre los metales, de manera cualitativa y cuantitativa, siguiendo lo expresado por varios investigadores [1] quienes han encontrado relaciones de parejas de factores, con coeficientes de correlación que revelan un efecto débil de la humedad y precipitación y un fuerte efecto de los contaminantes cloruros, dióxido de azufre y viento.

Variable	Lluvia	Vel. Viento	Cloruro mg Cl /	Azufre mg SO ₂ /	Polvo g/	Conductividad	Humedad
Estación	mm/año	m/s	m ² /día	m ² /dia	m ² /dia	Ω	% HR
Coro	411.7	5.35	29.9	24.0	5.11	46:2	77
Punto Fijo	173.6	3.76	98.6	12.8	7.98	157.3	73
Pto. Cumarebo	268.8	1.29	67.3	17.6	3.57	50.8	79
Agua Clara	264.0	1.43	32.4	20,0	8.26	44.8	61
Adicora	398.4	6.7	81.7	18.4	1.42	98.6	92
Tacarigua	771.8	2.72	22.7	20.0	2.27	30.9	79
Ricoa	620.4	0.94	41.8	32.8	2.03	59.9	81
La Enramada	244.8	2.06	110.3	19.2	8.82	96.4	77
Mene Maura	1036.6	3.89	38.9	30.4	4.29	49.6	61

Tabla 3 Variables Climatológicas y de Contaminación

Figura 3. Agresividad de la atmósfera falconiana tomando en cuenta las variables climatológicas y de contaminación de mayor incidencia en el proceso.

Corrosividad Atmosférica en Falcón

En la Figura 3 el diámetro de la circunsferencia representa el grado de corrosividad de la atmósfera, a mayor diámetro mayor es la agresividad de la misma, siendo por lo tanto el orden de agresividad por zonas: Adicora, La Enramada, Punto Fijo, Coro, Mene Mauroa, Ricoa, Tacari-

gua, Puerto Cumarebo, Agua Clara y Churuguara. Zonificación que se corresponde con los órde-

nes de magnitud de los indices de pérdidas de

pesos encontradas para el acero SAE 1010, los cuales fueron: Adicora y La Enramada 639 µm/año, Punto Fijo y Puerto Cumarebo 63.9 µm/año, Mene Mauroa, Coro y Tacarigua 19.2 µm/año, Agua Clara, Ricoa y Churuguara 6.39 µm/año. Además, en la Figura 3 se puede observar la relación cualitativa que existe entre la velocidad de pérdida de peso del acero y el cobre ensayado y la combinación de parejas de factores climáticos y agentes aeroquímicos. Así por ejemplo, se nota claramente que al existir una combinación de alto contenido de cloruros, humedad relativa y polvo la agresividad para el acero es muy alta, caso de Adícora, o una combinación de cloruros, polvo y viento la agresividad para el cobre es mucho mayor que en otras combinaciones, caso Punto Fijo, Coro y La Enramada, donde se encontraron fuertes efectos de corrosión-erosión en las placas de cobre expuestas. Caso contrario, al resto de las zonas estudiadas que al no existir combinaciones de parejas de factores con niveles altos de registros, los indices de corrosividad atmosférica encontrados fueron relativamente bajos, en especial para el cobre. Es importante hacer notar, que en zonas con alto valores de humedad relativa y polvo, o combinaciones de los dos, casos Churuguara, Agua Clara y Ricoa, la velocidad de corrosión atmosférica es muy baja. Por lo que se puede decir en forma cualitativa, que los factores de mayor incidencia en el proceso global de corrosión atmosférica en la Región Falconiana son la combinación de parejas entre: el contenido de cloruros y la humedad relativa y el viento y el polvo, combinados a un valor de humedad relativa cercano o mayor al 70 %.

Conclusiones

 De acuerdo al índice de pérdidas de pesos para placas de acero SAE 1010 la Región Falconiana puede ser zonificada en cuatro grandes grupos:

1º Grupo:

Adicora - La Enramada	639	µm/año)
-----------------------	-----	--------	---

2º Grupo:

Punto Fijo - Puerto Cumarebo	63.9 μm/año
3ª Grupo:	

Mene Mauroa - Tacarigua - Coro 19.2 μm/año 4º Grupo:

Agua Clara - Churuguara - Ricoa 6.39 μm/año 2.- La cinética de corrosión de los dos ma-

teriales estudiados se encuentra fuertemente influenciada por la contaminación por cloruros.

3.- La cinética de corrosión del cobre en las estaciones de Punto Fijo y Coro comprende un proceso de corrosión-erosión influenciado marcadamente por el fuerte viento combinado con una gran cantidad de polvo atmosférico.

4.- El cobre es el material más resistente de los dos estudiados a la agresividad de la atmósfera falconiana, registrándose velocidades de pérdidas de peso bastantes bajas en la mayoría de las zonas en estudio.

5.- El índice de pérdida de peso encontrado en cada zona estudiada guarda una estrecha relación con los valores máximos registrados en cloruros y polvo atmosférico.

Referencias Bibliográficas

- González, A. y Bastidas, J. M. Corrosión atmosférica del Al, Cu, Fe y Zn. I Parte: Su importancia, mecanismo y métodos de estudios. Revista Iberoamericana de Corrosión y Protección 13 (1): 7-19. 1982.
- Pascual M., R.D., Pérez, E., Marbal R., R. y Corvo P., F.E. Sobre la Cinética de la corrosión atmosférica uniforme de metales y aleaciones: Acero de baja aleación y cinc en clima tropical húmedo. Corrosión y protección. 12 (5): 15-18. 1981.
- Ayllon, E.S., Granese, S.L., Bonazzola, C. y Rosales, B.M. Corrosión atmosférica de

Rev. Téc. Ing. Univ. Zulia. Vol. 17, No. 1, 1994

15

aleaciones y Fe y Zn en ambientes poluídos. Revista Iberoamericana de Corrosión y Protección. 17 (3): 205-211. 1986.

- Corvo P., F. Atmospheric Corrosion of Steel in a humid tropical climate. Influence of pollution, humidity, temperature, solar radiation and rainfall. Corrosion 40 (4): 170-175. 1984.
- Frasqual M., R.D., Pérez, E. y Marbal R., R. Problemas relacionados con la

determinación de la corrosión atmosférica en función del tiempo de humectación para distintos intervalos de temperatura y humedad relativa. Corrosión y Protección. 12 (4): 27-29. 1984.

> Recibido en forma revisada el 18 de Encro de 1994