ppi 201502ZU4659
Esta publicación cientíca en formato digital es
continuidad de la revista impresa
ISSN 0254-0770 / Depósito legal pp 197802ZU38
UNIVERSIDAD DEL ZULIA
Una Revista Internacional Arbitrada
que está indizada en las publicaciones
de referencia y comentarios:
• SCOPUS
• Compendex
• Chemical Abstracts
• Metal Abstracts
• World Aluminium Abstracts
• Mathematical Reviews
• Petroleum Abstracts
• Current Mathematical Publications
• MathSci
• Revencyt
• Materials Information
• Periódica
• Actualidad Iberoamericana
DE LA FACULTAD DE INGENIERÍA
REVIST
A TÉCNICAREVISTA TÉCNICA
“Buscar la verdad y aanzar
los valores transcendentales”,
misión de las universidades en
su artículo primero, inspirado
en los principios humanísticos.
Ley de Universidades 8 de
septiembre de 1970.
“Buscar la verdad y aanzar
los valores transcendentales”,
misión de las universidades en
su artículo primero, inspirado
en los principios humanísticos.
Ley de Universidades 8 de
septiembre de 1970.
VOLUME 43
SEPTEMBER - DECEMBER 2020
NUMBER 3
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 3, 2020, September-December, pp. 114 - 176


Edison Javier Lara Guerrero , David Patricio Guerrero Cuasapaz , Byron Iván
Altamirano León
Universidad Politécnica Salesiana, Facultad de Ingeniería Civil, Av. Rumichaca Ñan y Av. Moran Valverde, Casilla
17-12-536, Quito-Ecuador
*Autor de correspondencia: dguerrero@ups.edu.ec
https://doi.org/10.22209/rt.v43n3a03
Received: 18/09/2019 | Accepted: 29/06/2020 | Available: 01/09/2020

The problem in the disposal of rubber particles, creates a necessity to propose new alternatives to approach the
mitigation of the environmental impact generated by the contamination of tires. In this sense, taking advantage of this
recycled material is proposed for use in construction materials. This investigation consists in the design and elaboration

similar technical and economic characteristics of a conventional type B concrete block, proposed in the standard NTE INEN

particles product of the crushing of tire. The results show that the alternative is viable under the parameters mentioned
above; therefore, the concrete block with 20% rubber particles showed a minimum net compression strength of 3.69 MPa
complying with the established. The price of the prototype concrete block with 20% rubber particles is cheaper than a
conventional block type B proposed in this research.
 prototype block; recycled rubber; concrete; compression resistance.



La problemática en la disposición de residuos de caucho crea la necesidad de proponer nuevas alternativas, el
enfoque es la mitigación del impacto ambiental generado por la contaminación de los neumáticos, aprovechando este
material reciclado se propone la utilización en materiales para la construcción. La investigación consiste en el diseño y
elaboración de un bloque de concreto prototipo utilizando partículas de caucho, para diferentes porcentajes de sustitución

B, propuesto en la norma NTE INEN 3066 2016-11. Lo propuesto, es la sustitución de porcentajes (10%, 15% y 20%) en

alternativa es viable bajo los parámetros antes mencionados; por lo tanto, el bloque de concreto con partículas de caucho
del 20% de sustitución mostró una resistencia neta mínima a la compresión simple 3,69 MPa cumpliendo con lo establecido.
El precio del bloque de concreto prototipo con partículas de caucho del 20% de sustitución resulta más económico que un
bloque convencional tipo B propuesto en esta investigación.
 bloque prototipo; caucho reciclado; concreto; resistencia a la compresión.
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 3, 2020, 134-141
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 3, 2020, September-December, pp. 114 - 176
135


The increase in the population generates a
greater demand for housing in both the rural and urban
sectors, thus also generating a demand for construction
materials.


of the elements that surround us. This need is remarked,

For this reason, in recent years we have observed how
construction professionals include certain elements in
construction materials.
The number of vehicles circulating increases
year by year. Thus, we see the generation of by-products
from vehicles, such is the case of waste that comes from
mechanical processes of tire retreading [1].
The environmental problem of tire waste is
generated by the lack of knowledge of waste management
plans, due to both cultural issues and the lack of
government policies that intervene in private companies,
   
this type of waste.
In Ecuador, given the absence of the enforcement
of political measures that indicate what to do with tires
that are no longer useful for driving, the Ministry of
Environment of Ecuador (MAE, in Spanish) launched the
Integrated Used Tire Management Plan, in order to reduce
the environmental pollution caused by this product. The
1998 Ministerial Agreement, which in its relevant part
provides that tire dealers must recover 30% of their
market.
The State considers tires as a special waste,

also be a source for the spread of epidemics transmitted
by mosquitoes [2].
Due to this, it becomes necessary to generate
ideas that allow solutions for this type of problem,
including the use of rubber particles from crushed tires
in concrete blocks, thus minimizing the environmental

items.
In the research carried out by Torres [3], “It
was concluded that mechanical strength (compression)
was reduced with the three volume percentages of added
rubber waste. The mechanical properties of concrete were
        
with tire rubber waste by 10%, 20% and 30%.
On the other hand, in the research carried out by
Bastidas P. and Viñán M. [4], “The compressive strength
          
the size of rubber particles that pass through sieves No.
16, No. 30 and No. 50 were 69.95%, 82.65% and 80.36%
       
100% compressive strength, which was the original design
         
best performance was the concrete made with particles
retained in sieve No. 30”. It should be mentioned that we
quote this research here to take advantage of the results
obtained from the particles where the best strength was
obtained.
The research by Nazer A. et al. [1] indicates
        
         
compression behavior at 28 days”; it also states: that the
feasibility of manufacturing concrete that has adequate
compressive strength is evident with the inclusion of

that are out of use.

of granulated rubber from disused tires, as part of the
       
blocks, through destructive and non-destructive tests, the
research indicates that the addition of up to 20% of rubber
      
to traditional concrete. On the other hand, the dynamic
stiffness modulus decreases with a greater addition of
granulated rubber, and the granulated rubber in concrete
offers greater acoustic and thermal insulation [5].

rubber particles that result of the tire friction on the

that uses AC-20 asphalt [6].
There is good compatibility between the
particles of out of use tires and concrete, and also there
is an “improvement with respect to cracking by retraction
and dissipation of elastic energy, which would result in a

of research used in the design of concrete road surfaces or

This research article was prepared with the
purpose of analyzing and evaluating the incidence of
      
recycled tires and determining the results that will be


The research was carried out in the city of Quito,
province of Pichincha, Ecuador. The rubber particles
used for this work were collected in Durallanta in the
south of the city. The analysis of the physical properties
of the particles were carried out in the Materials Testing
Laboratory of the Salesian Polytechnic University.
   
rubber particle sizes retained in the sieves (see Table
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 3, 2020, September-December, pp. 114 - 176
136
Guerrero et al.
       
strength in concrete blocks type B - average minimum net
strength = 4.0-3.5 MPa).
Sieves used in the sieving of rubber.
ASTM Sieve (#) Particle size (mm)
4 4.760
8 2.380
10 2.000
12 1.700
16 1.190
30 0.596


The cement used is the ARMADURO® brand,
Type IP (general use) ASTM C 595, with a density of 3.1 g/
cm
3,
in accordance with the NTE INEN 490 standard, with

3
[8]

Drinking water at room temperature (13 °C - 23


Stone materials from the Pifo quarry, in province
of Pichincha, observing NTE INEN 696 standard (ASTM C
136-06) were used. [9]

      
aggregates was performed under the NTE INEN 872
standard (ASTM C 33-08), complying with what is


This test was carried out to determine the color,
        

INEN 855 (ASTM C 94, ICONTEC 3318) [11].

This test was performed under the parameters of
the NTE INEN 858 standard (ASTM C 29-09) indicated in

and coarse material [12].
 Characterization of the Aggregates.
Property
Fine
aggregate
Coarse
aggregate
Fineness modulus 3.01 *
Nominal maximum size
(mm)
4.76 19.05
Abrasion Percentage (%) * 32.6
Compacted Unit W. (kg/m³) 1640 1440
Specic Solid W. (kg/m³) 2660 2650
Moisture Content (%) 7.24 1.44
Absorption percentage (%) 6.30 2.67

This test is based on the NTE INEN 856, 857
standard (ASTM C 128-07a, ASTM C127-07), where it
describes the determination of the relative density and the


Steps for the Durallanta recycling process:

       
rigorous inspection, determining a severe damage to the


In this step, the remaining layer of the tire is
removed (see Figure 1). Using precision equipment, the
rim is prepared to receive the appropriate tread according

 Blade machine for the scraping process.
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 3, 2020, September-December, pp. 114 - 176
137


In this step, all the particles coming from the
scraping of the tires are collected through ducts driven by
an air pump into the collection area (see Figure 2), where
the raw material used to make the prototype blocks is
located.


      
performed in accordance with A.C.I.211. This standard
uses the properties of the aggregates and the required
compressive strength [14].


For the production of the concrete prototype

the NTE INEN 3066 standard (ASTM C 90) were used.
The sampling of the concrete prototype blocks
was carried out under the NTE INEN 2859-1 standard
(ISO 2859-1); the NTE INEN 1778 Abrams cone was used


The factory curing procedure is to keep the blocks

in the morning and afternoon, covering them from the sun
with a damp cotton blanket.
One way to cure the blocks is to spray them with
water, using hoses (preferably with a spray) so that they
do not dry out at any time. Another way to cure them is
to cover them with canvases or cotton blankets that are
permanently wet, or with plastic sheets that form an
airtight environment that prevents moisture loss through
evaporation. Covering them with black plastic and

strength as long as the blocks are kept humid [16].
The rubber particles for the prototype blocks
were obtained with the sieves shown in Table 1, where the
        
on sieves No. 12, No. 16 and No. 30 (see Figure 3) was
collected. This was done to take the most advantage of the
recycled material.
 Particle size rubber retained in sieves No. 12,
No. 16, and No. 30 (see Table 1).
With these recycled rubber particles, after
performing the granulometric analysis (see Figure 4), the
prototypes were manufactured, replacing the volume of
       
previously described sieves.
 Recycled rubber granulometric curve.
Compression test carried out at 28 days, for this
purpose three conventional non-structural type B blocks
and 40 prototype blocks were tested.
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 3, 2020, September-December, pp. 114 - 176
138
Guerrero et al.
Conventional non-structural type B concrete
blocks and prototype concrete blocks for simple
compression testing were used as entire units, where their
net area can be determined by the procedure described
in section D.5.5 of the NTE INEN 3066 standard for
the simple compression test. The net area of the entire
      
load reached by each specimen, to calculate the average
   

INEN 3066 standard. The leveling of the specimens was
performed according to the NTE INEN 2619 standard
(ASTM C 1552-09a) [15].


The aggregate material from the Pifo sector,
selected for this research are not within the NTE INEN
872 range. [10], for this the FULLER THOPSON method
[14] had to be used to adjust the granulometric curve and
estimate the content of sand and gravel, which resulted in
51% gravel and 49% sand. This is an aggregate with a high
percentage of coarse particles, and this affects the water
demand and the workability of the concrete. However, the

out the use of this material.
In the analysis of organic impurities with the
NTE INEN 855 standard, a light yellowish color was

strength concrete [11].
The dosage or proportion of the material had a

by volume. The replacement percentages of the recycled
rubber particles varies as follows: 10%, 15% and 20% by

For the volumetric design calculation of the
            
a reference by using a steel container designed at 0.045
m
3
for the desired effect, in which it was necessary
to internally graduate it to be able to calculate the
percentages of recycled rubber particles to carry out the

concrete blocks.
Table 3 shows the quantities of the materials
        
 
cement bag. Since 20% was replaced, we obtained a value
of 1.4 containers of rubber particles for the production of
the prototype blocks.
 Dosage in volume used for the production
of the prototype block using 20% of rubber particles

Material m
3
L Container Cement
Cement 1 bag
Sand 0.252 5.6
Gravel 0.315 7
Water 0.048 48.00
20% rubber
container
0.063 1.4
Note: 0.045m 3
container
      
       
where the prototype blocks were made.
       
in the vibrating or blocking machine. The duration of
the vibration, as well as the power of the engine of the


per mold).

machine, it is compacted and consolidated based on the
controlled pressure and vibration (see Figure 5). The


 Vibrating or blocking machine.

The analysis of compression strength on
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 3, 2020, September-December, pp. 114 - 176
139

conventional concrete blocks and prototypes with 10%,
15% and 20% rubber particles replacement, were carried
out 28 days after they were madee.
Table 4 shows the simple compressive strength
test results, as well as the average compressive strength of
the four samples made.
 Block Compressive Strength.
Sample
Age
(days)
Conventional
block type b
(MPa)
Prototype
block 10%
(MPa)
Prototype
block 15%
(MPa)
Prototype
block 20%
(MPa)
1 28 6.24 5.24 4.89 3.92
2 28 5.52 5.19 5.22 3.41
3 28 5.77 5.08 5.09 3.79
Average
28 5.84 5.17 5.06 3.71
The conventional block without the addition of
rubber powder designed and manufactured at the factory
reached an average strength of 5.84 MPa. It was observed
that the average strength of the prototype blocks with
rubber particles at 10%, 15% and 20% are 5.17, 5.06 and
3.71 MPa respectively (see Figure 6). Then, we chose the
prototype block that had 20% of rubber particles (greater
use of particles) and that complies with the established
strength for a non-structural type B block for the masonry
that is being considered in this research.
 Average compressive strength, calculated from
simple compressive strength test results.
      
rubber particles that have a lower density and resistance
      
of the concrete to decrease (see Figure 7). Therefore,
the strength of a composite material, such as concrete,
depends on the strength of its components [17].
 Prototype block compression test.
The decrease in compressive strength at 28
days of age of the different types of blocks tested with the
percentages at 10%, 15% and 20% of rubber particles
were 11.46%, 13.29% and 36.55 %, respectively (see
Figure 8), related to the 100% of the strength reached by
the conventional block.
Decrease of compressive strength in prototype
blocks compared to the conventional non-structural type
B block.

Once the optimum percentage that meets the
simple compressive strength test requirements was
       
for which a sample with more than 50% was taken,
following L.P.J. Puerto [18], who states that when there is
no research carried out previously on the type of subject
being studied this should be placed at 50% of desired
ratio and 50% of the unwanted ratio. Thus, 40 prototype
       
and compressive strength, in order to determine the
probabilistic data of the prototype.
This type of population is considered to be

Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 3, 2020, September-December, pp. 114 - 176
140
Guerrero et al.

from the point of view of the knowledge possesed on
the total quantity, that is to say when the researcher has
a registry of all the elements that make up the research
study.
When analyzing these data, we obtain the
following results for the mean strength: a value of 3.7 MPa
and a standard deviation of 0.35, this is a measure of the
degree of dispersion of the analyzed data with respect to
the average value. Thus we interpret that the degree of
dispersion to be less than 1; as indicated in Figure 9, then
these data is reliable for the proposed research according
to R. Tulio [19].
 Gaussian bell normal distribution.
When determining the Gaussian bell, the result
of the 40 specimens is: 51.85% of the total of the samples
tested are within the sought MPa strength (3.5 - 4.0).

The costs obtained for manufacturing a
conventional non-structural type B block and a prototype
concrete block substituting 20% with rubber particles,
with the established dosage 1:7:7 and 1:7:5.6 respectively,
are summarized below:
Figure 10 shows the cost of making the
conventional type B block at a value of $ 0.39 and the cost
of the prototype block is $ 0.38.
Manufacturing cost of conventional block
compared to prototype.
As we can see the cost of the conventional type B
block is upper than the prototype, this is due to the fact that
      
obtaining the saving of one cent of a dollar. For the purpose
of this research, a batch of 70 specimens was obtained,
resulting in the savings indicated above. Therefore it is
evident that when considering a daily production with
an estimated of 80 bags of cement, producing 5,600
blocks, that is, an annual block production of 2,044,000
specimens, resulting in an annual production savings of

since they encourage increasing production to achieve
 
indirectly contributing to environmental decontamination
by lowering the rate of environmental impact caused by
rubber in its decomposition process.

The use of the recycled rubber particles retained
in sieves No. 12, No. 16 and No. 30 was performed in

recycled material from the Durallanta factory and to
contribute in the reduction of the environmental impact
currently registered in the city.
The type B conventional concrete block subjected
to the simple compression test had a performance of 5.84
MPa, for which it was designed. The prototype block
with 10%, 15% and 20% rubber particle substitution
had 5.17, 5.06 and 3.71 MPa respectively. Therefore, the
prototype concrete block using a 20% rubber particle
substitution was chosen because it meets the minimum
net compressive strength of the NTE INEN 3066 standard
required in this research.
The decrease in compressive strength at 28
days of age of the prototype concrete block tested with
20% rubber particles was 36.55% (3.71MPa), compared
to 100% (5.84MPa) of the strength reached by the
conventional type B concrete block, despite the fact that
this reduction occurred, the prototype block is within the
required strength.
A standard deviation of 0.35 and variation

which means that the results were homogeneous and with
a low degree of dispersion. Therefore, we can determine
that the optimum percentage of rubber particles is 20%
 

was achieved.
Within the unit price analysis for the production
of conventional and prototype concrete blocks, the
prototype block is cheaper. This is because a percentage of

an inferior value on that item. The rest of the materials,
labor and equipment are similar.
Rev. Téc. Ing. Univ. Zulia. Vol. 43, No. 3, 2020, September-December, pp. 114 - 176
141

The unit price of the conventional type B
concrete block for the proposed dosage has a higher
market value, while the prototype has a lower value. Thus,
      
given what we presented above. The analysis of unit prices

concrete prototype with 20% rubber particles compared
to the conventional type B block.
Finally, this research has shown that the
prototype block complies with the NTE INEN 3066
standard. It also helps to mitigate the environmental
impact produced by the contamination of discarded tires.

The authors thank the Polytechnic Salesian
University (Quito-Ecuador), in particular the Materials
Testing Laboratory for the support and management

our Civil Engineering Career.

[1] Nazer A., Honores A., Chulak P. y Pavez O.: “Hormigón
sustentable basado en fibras de neumáticos fuera de
uso”. Rev. Int. Contam. Ambie., Vol. 35, No. 3, (2019),
1-2.
[2] Ministerio del Ambiente del Ecuador: “Instructivo
para la Gestión Integral de Neumáticos Usados
Acuerdo Ministerial 098”. Ecuador, (2015).
[3] Torres H.: “Valoración de las propiedades mecánicas
y de durabilidad de concreto adicionado con
residuos de llantas de caucho”. Escuela Colombiana
de Ingeniería Julio Garavito, (2014), 16-27.
[4] Bastidas P. y Viñán M.: “Análisis de las propiedades
físicas and mecánicas del hormigón elaborado con
partículas de caucho de neumáticos reciclados”.
Universidad Politécnica Salesiana. Quito, (2017),
1-9.
[5] Suárez I. and Mujica E.: “Bloques de concreto
con material reciclable de caucho para obras de
edificación”. Universidad Nacional de San Antonio
Abad del Cusco. Perú, (2016), 26-112.
[6] Cando W., Bonilla P., Yánez G., Bucheli J., Muñoz A.,
Orquera M., Fernández L. and Espinoza P.: “Efecto de
la incorporación por vía seca de residuos de caucho
obtenido tras su remoción de una pista de aterrizaje
de aeropuerto en un asfalto AC-20”. Rev. Téc. Ing.
Univ. Zulia. Vol. 43, No. 1, (2020), 3-11.
[7] Witoszek, B., Hernández, F., Alonso, M., Bollati, M.,
Parga, B., Barluenga, G., and Benito C.: “Hormigón
con fibras de caucho de recuperación de neumáticos
usados yde polipropileno diseño del firme de
hormigón de caucho”.Recuperado de:https://www.
aecarretera.com/congresos/CL26.pdf, (2004), 14-
15.
[8] NTE INEN 409: “Cementos hidráulicos compuestos,
Requisitos”. Quito, (2011).
[9] NTE INEN 696: “Áridos, análisis granulométrico en
los áridos, fino y grueso”. Quito, (2011).
[10] NTE INEN 872: “Áridos para hormigón”. Quito,
(2011).
[11] NTE INEN 855: “Áridos.Determinación de impurezas
orgánicas en el árido fino para hormigón”.
Quito,(2010).
[12] NTE INEN 858: “Áridos. Determinación de la masa
unitaria (peso volumétrico) y el porcentaje de
vacíos”. Quito, (2010).
[13] NTE INEN 856: “Áridos. Determinación de la
densidad, densidad relativa (gravedad específica) y
absorción del árido fino”. Quito, (2010).
[14] Niño J.: “Tecnología del concreto: Materiales,
Propiedades y Diseño de mezcla”. Tomo 1, Tercera
Edición, Impreso por Nomos Impresores. Bogotá,
(2010), 184-205.
[15] NTE INEN 3066: “Bloques de hormigón. Requisitos y
métodos de ensayo”. Quito, (2016).
[16] Régil O.: “Optimización del proceso de fabricación

con grado de resistencia 28kg/cm², caso específico
fuerte-block máquinas #1 Y #2”. Universidad de San
Carlos de Guatemala, (2015), 1-12.
[17] Cruz M. and GómezO.: “Influencia del agregado
grueso reciclado de mampostería en el
comportamiento del concreto”. Tesis de Maestría,
Pontificia Universidad Javeriana. Bogotá. http://hdl.
handle.net/10554/12676, (2017), 28-102.
[18] Lagares P. and Puerto J.: “Población y Muestra
Técnicas de muestreo”. MaMaEuSch** Management
Mathematics for European Schools 94342 - CP - 1
- 2001 - 1 - DE - COMENIUS - C21. Universidad de
Sevilla, (2001), 2-13.
[19] Ramirez T.: “Como hacer un proyecto de
investigación, de Técnicas de análisis y aspectos
administrativos”. Caracas, Editorial Panapo, (1999),
165-167.
REVISTA TECNICA
www.luz.edu.ve
www.serbi.luz.edu.ve
www.produccioncientica.org
OF THE FACULTY OF ENGINEERING
UNIVERSIDAD DEL ZULIA
This Journal was edited and published in digital format
on August 31st 2020 by Serbiluz Editorial Foundation
Vol. 43. N°3, September - December 2020_________