Cáncer y Microbiota.

Cancer and Microbiota.

  • Francisco Arvelo Fundación Instituto de Estudios Avanzados-IDEA
  • Felipe Sojo Fundación Instituto de Estudios Avanzados-IDEA
  • Carlos Cotte Universidad Central de Venezuela
Palabras clave: cáncer, microbiota, disbiosis, genotoxinas, microbioma

Resumen

El cuerpo humano está expuesto continuamente a microorganismos tanto fijos como transitorios, así como sus metabolitos tóxicos, lo cual puede conducir a la aparición y progresión del cáncer en sitios distantes al hábitat particular de cada microbio. Diversos estudios científicos han hecho posible entender la relación estrecha que existe entre microbioma y cáncer, ya que los componentes del primero, al tener la capacidad de migrar a diferentes zonas del cuerpo, pueden contribuir al desarrollo de diversas enfermedades crónicas. Los estudios de metagenómica sugieren que la disbiosis, en la microbiota comensal, está asociada con trastornos inflamatorios y varios tipos de cáncer, los cuales pueden ocurrir por sus efectos sobre el metabolismo, la proliferación celular y la inmunidad. La microbiota puede producir el cáncer cuando existen condiciones predisponentes, como en la etapa inicial de la progresión tumoral (iniciación), inestabilidad genética, susceptibilidad a la respuesta inmune del huésped, a la progresión y la respuesta a la terapia. La relación más estrecha, entre el microbioma y el cáncer, es a través de la desregulación del sistema inmune. En este trabajo revisamos las actuales evidencias sobre la asociación entre la microbiota y algunos tipos de cáncer como el cáncer gástrico, colorrectal, próstata, ovario, oral, pulmón y mama.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Francisco Arvelo, Fundación Instituto de Estudios Avanzados-IDEA

Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela

Felipe Sojo, Fundación Instituto de Estudios Avanzados-IDEA

Centro de Biociencias, Fundación Instituto de Estudios Avanzados-IDEA, Caracas, Venezuela,

Carlos Cotte, Universidad Central de Venezuela
Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela.

Citas

Arvelo F, Sojo F and Cotte C. Tumor progression and metastasis. Ecancermedicals cience 2016; 10:617. doi: 10.3332/ecan- cer.2016.617.

Zhang H, Sun L. When human cells meet bacteria: precision medicine for cancers using the microbiota. Am J Cancer Res 2018; 8(7):1157–1175.

Panebianco C, Andriulli A and Pazienza. V Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 2018; 6(1): 92. doi: 10.1186/s40168-018-0483-7.

Martin C, Osadchiy V and Mayer E. The brain-gut-microbiome-axis-cell-mol. Cell Mol Gastroenterol Hepatol 2018; 6:133-148.

Llorca L, Ruiz V, Perez GP. Helicobacter pylori: The balance between a role as colonizer and pathogen. Best Pract Res Clin Gastroenterol 2014; 28(6):1017–1029.

Dias-Jácome E, Libânio D, Borges-Canha M, Galaghar A and Pimentel-Nunes P. Gastric microbiota and carcinogenesis: the role of non-Helicobacter pylori bacteria A systematic review. Rev Esp Enferm Dig 2016; 108(9):530-540.

Wang LL, Yu XJ, Zhan SH, Jia SJ, Tian ZT, Dong QJ. Participation of microbiota in the development of gastric cancer. World J Gastroenterol 2014; 7; 20(17): 4948–4952.

Dicksved J, Lindberg M, Rosenquist M, Enroth H, Jansson JK, Engstrand L. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J Med Microbiol 2009; 58:509– 516.

Lertpiriyapong K, Whary MT, Muthupalani S, Lofgren JL, Gamazon ER, Feng Y, Ge Z, Wang TC, Fox JG. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 2014; 63:54–63.

Hernández-Ramírez RU, Galván-Portillo MV, Ward MH, Agudo A, González CA, Oñate-Ocaña LF, Herrera-Goepfert R, Palma-Coca O, López-Carrillo L. Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico City. Int J Cáncer 2009; 125:1424–1430.

Forsythe SJ, Cole JA. Nitrite accumulation during anaerobic nitrate reduction by binary suspensions of bacteria isolated from the achlorhydric stomach. J Gen Microbiol 1987; 133:1845–1849.

Junier P, Molina V, Dorador C, Hadas O, Kim OS, Junier T, Witzel JP, Imhoff JF. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl Microbiol Biotechnol 2010; 85:425–440.

Spieck E, Lipski A. Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria. Methods Enzymol 2011; 486:109–130.

Feng Q, Chen WD and Wang YD. Gut microbiota: an integral moderator in health and disease. Front Microbiol 2018; 9:151 doi: 10.3389/fmicb.2018.00151.

Susannah Selber-H, Rukundo B, Ahmad M, Akoubi H, Al-Bizri H, Adelekan F. Aliu, Tanyi U. Ambeaghen, Lilit Avetisyan, Irmak Bahar, Alexandra Baird, Fatema Begum, Hélène Ben Soussan, Virginie Blondeau-Éthier, Roxane Bordaries, Hele- ne Bramwell, Alicia Briggs, Richard Bui, Matthew Carnevale, Marisa Chancharoen, Talia Chevassus, Jin H. Choi, Karyne Coulombe, Florence Couvrette, Samantha D’Abreau, Meghan Davies, Marie-Pier Desbiens, Tamara Di Maulo, Sean-Anthony Di Paolo, Sabrina Do Ponte, Priscyla dos Santos Ribeiro, Laure-Anne Dubuc-Kanary, Paola K. Duncan, Frédérique Dupuis, Sara El-Nounou, Christina N. Eyangos, Natasha K. Ferguson, Nancy R. Flores-Chinchilla, Tanya Fotakis, Mariam Gado Oumarou H D, Metodi Georgiev, Seyedehnazanin Ghiassy, Natalija Glibetic, Julien Grégoire Bouchard, Tazkia Hassan, Iman Huseen, Marlon-Francis Ibuna Quilatan, Tania Iozzo, Safina Islam, Dilan B. Jaunky, Aniththa Jeyasegaram, Marc-André Johnston, Matthew R. Kahler, Kiranpreet Kaler, Cedric Kamani, Hessam Karimian Rad, Elisavet Konidis, Filip Konieczny, Sandra Kurianowicz, Philippe Lamothe, Karina Legros, Sebastien Leroux, Jun Li, Monica E. Lozano Rodriguez, Sean Luponio-Yoffe, Yara Maalouf, Jessica Mantha, Melissa McCormick, Pamela Mondragon, Thivaedee Narayana, Elizaveta Neretin, Thi T. T. Nguyen, Ian Niu, Romeo B. Nkemazem, Martin O’Donovan, Matthew Oueis, Stevens Paquette, Nehal Patel, Emily Pecsi, Jackie Peters, Annie Pettorelli, Cassandra Poirier, Victoria R. Pompa, Harshvardhan Rajen, Reginald-Olivier Ralph, Josué Rosales-Vasquez, Daria Rubinshtein, Surya Sakr, Mohammad S. Sebai, Lisa Serravalle, Fily Sidibe, Ahnjana Sinnathurai, Dominique Soho, Adithi Sundarakrishnan, Veronika Svistkova, Tsolaye E. Ugbeye, Megan S. Vasconcelos, Michael Vincelli, Olga Voitovich, Pamela Vrabel, Lu Wang, Maryse Wasfi, Cong Y. Zha, and Chiara Gamberi. Human gut microbiota: toward ecology of disease. Front Microbiol 2017; 8: 1265 doi: 10.3389 / fmicb.2017.01265.

Rea D, Coppola G, Palma G, Barbieri A, Luciano A, Del Prete P, Rossetti S, Berretta M, Facchini G, Perdonà S, Turco MC, Arra C. Microbiota effects on cancer: from risks to therapies. Oncotarget 2018; 9:17915-17927. doi: 10.18632/oncotarget.24681.

Gensollen T, Iyer SS, Kasper DL, Blumberg, RS. How colonization by microbiota in early life shapes the immune system. Science 2016; 352:539–544.

Schmidt TSB, Raes J and Bork P. The human gut microbiome: from association to modulation. Cell 2018; 172:1198–1215.

Cani PD. Human gut microbiome: hopes, threats and promises Gut 2018; 67:1716–1725.

Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 2013; 28:9–17.

Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, Leatham MP, Lins JJ, Allen RL, Laux DC, Cohen PS, Conway T. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 2018; 76:1143–1152.

Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 2008; 8:411–420.

Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N, Russell SL, Vallance BA, Finlay BB. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium induced colitis. Infect Immun 2011; 79:1536–1545.

Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell 2010; 140:859–870.

Lane ER, Zisman TL, Suskind DL. The microbiota in inflammatory bowel disease: Current and therapeutic insights. J Inflamm Res 2017; 10:63–73.

Caputi V, Giron MC. Microbiome gut brain axis and toll-like receptors in Parkinson’s Disease. Int J Mol Sci 19:1689 doi: 10.3390/ ijms19061689.

Salim SY, Soderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:362–381.

Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin 2017; 67:326–344.

Yao Y, Dai W. Genomic instability and cancer. J Carcinog Mutagen 2014; 5. doi: 10.4172/2157-2518.1000165.

Frisan T. Bacterial genotoxins: The long journey to the nucleus of mammalian cells. Biochim Biophys Acta 2016; 1858:567–575.

Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C. Intestinal inflammation targets cancer inducing activity of the microbiota. Science 2012; 338:120–123.

Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first identified bacterial protein involved in human cancer. Proc Jpn Acad Ser B Phys Biol Sci 2017; 93:196–219.

Moss SF. The clinical evidence linking. Cell Mol Gastroenterol Hepatol 2017; 3: 183–191.

Ghoi DS, In Seo S, Shin WG, Hyuk Park C. Risk of colorectal neoplasia in patients with Helicobacter pylori infection: a systematic review and meta-analysis. Clin Transl gastroenterol 2020; 11(2): e00127.

Valenzuela M, Canales J, Corvalan A, Quest A. Helicobacter pylori induced inflammation and epigenetic changes during gastric carcinogénesis. World J Gastroenterol 2015; 21: 12742-12756.

Ito N, Tsujimoto H, Hideri U, Xie Q, Shinoniya N. Helicobacter pylori mediated and signaling transduction gastric cancer. J Clin Med 2020; 9(11): 3699.

Miftahussurur M, Yamaoka Y, Graham D. Helicobacter pylori an oncogenic pathogen. Export Rev Mol Med 2017; 19: e4. doi 10.1017, erm 2017.4.

Dai Z, Zhang J, Wu Q, Chen J, Liu J, Wang Lu The role of Microbiota in the development of colorectal cancer. Int J Cancer 2019;145(8): 2032-2041.

Toller IM, Neelsen KJ, Steger M, Hartung ML, Hottiger MO, Stucki M, Kalali B, Gerhard M, Sartori AA, Lopes M, Müller A. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. Proc Natl Acad Sci USA 2011; 108:14944–14949.

Grasso F, Frisan T. Bacterial genotoxins: merging the DNA damage response into infection biology. Biomolecules 2015; 5:1762–1782.

Lara-Tejero M, Galán JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I like protein. Science 2000; 290:354–357.

Bergounioux J, Elisee R, Prunier AL, Don-nadieu F, Sperandio B, Sansonetti P, Arbibe L. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium’s epithelial niche. Cell Host Microbe 2012; 11:240–252.

Vacante M, Ciuni R, Basili F, Biondi F. Gut microbiota and colorectal cancer development: A closer look to the adenoma carcinoma sequence. Biomedicines 2020; 8(11): 489. doi: 10.3390 biomedicines 8110489.

Lu R, Wu S, Zhang YG, Xia Y, Liu X, Zheng Y, Chen H, Schaefer KL, Zhou Z, Bissonnette M, Li L, Sun J. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis 2014; 3 e105. doi: 10.1038/oncsis.2014.20.

Bronte-Tinkew DM, Terebiznik M, Franco A, Ang M, Ahn D, Mimuro H, Sasakawa C, Ropeleski MJ, Peek RM, Jones NL. Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer Res 2009; 69:632–639.

Kuijl C, Savage ND, Marsman M, Tuin AW, Janssen L, Egan DA, Ketema M, van den Nieuwendijk R, van den Eeden SJ, Geluk A, Poot A, van der Marel G, Beijersbergen RL, Overkleeft H, Ottenhoff TH, Neefjes J. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 2007; 450:725–730.

Ding SZ, Minohara Y, Fan XJ, Wang J, Reyes VE, Patel J, Dirden-Kramer B, Boldogh I, Ernst PB, Crowe SE. Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun 2007; 75:4030–4039.

Wada Y, Takemura K, Tummala P, Uchida K, Kitagaki K, Furukawa A, Ishige Y, Ito T, Hara Y, Suzuki T, Mimuro H, Board PG, Eishi Y. Helicobacter pylori induces somatic mutations in TP53 via overexpression of CHAC1 in infected gastric epithelial cells. FEBS Open Bio 2018; 8:671–679.

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157: 121–141.

Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL, Casero RA Jr. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA 2011; 108:15354– 15359.

Chaturvedi R, Asim M, Romero-Gallo J, Barry DP, Hoge S, de Sablet T, Delgado AG, Wroblewski LE, Piazuelo MB, Yan F, Israel DA, Casero RA Jr, Correa P, Gobert AP, Polk DB, Peek RM Jr, Wilson KT. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology 2011; 141:1696–1708.

Huycke MM, Moore D, Joyce W, Wise P, Shepard L, Kotake Y, Gilmore MS. Extra-cellular superoxide production by Entero coccus faecalis requires demethylmena quinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 2001; 42:729–740.

Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 2009; 22:349–369.

Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 2003; 124:392–400.

Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, Housseau F, Pardoll DM, Sears CL. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009; 15:1016–1022.

Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F, Galon J. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 2011; 71(4):1263-1271.

Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesion. Cell Host Microbe 2013; 14:195–206.

Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe 2011; 10:324–335.

Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL. Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 2003; 10:179–186.

Fernández MF, Reina-Pérez I, Astorga JM, Rodríguez-Carrillo A, Plaza-Díaz J, Fontana L. Breast Cancer and Its Relationship with the Microbiota. Int J Environ Res Public Health 2018; 15(8) pii: E1747. doi: 10.3390/ijerph15081747.

Sobhani I, Bergsten E, Couffin S, Amiot A, Nebbad B, Barau C, de’Angelis N, Rabot S, Canoui-Poitrine F, Mestivier D, Pédron T, Khazaie K, Sansonetti PJ. Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc Natl Acad Sci USA 2019; 116 (48):24285-24295.

Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, Xiao X, Kwong TNY, Tsoi H, Wu WKK, Zeng B, Chan FKL, Sung JJY, Wei H, Yu J. Gavage of fecal samples from patients with colorectal cáncer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 2017; 153: 1621–1633.

Purcell RV, Visnovska M, Biggs PJ, Schmeier S, Frizelle FA. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci Rep 2017; 7 (1): 11590. doi: 10.1038/ s41598-017-11237-6.
Massari F. The human microbiota and prostate cancer: friend or foe?. Cancers (Basel) 2019; 11(4). pii: E459. doi: 10.3390/can-cers11040459.

Hayes VM, Ren S and Collins CC. Metagenomic and metatranscriptomic analysis of human prostate microbiota from patients with prostate cancer BMC. Genomics 2019; 20(1):146. doi: 10.1186/s12864-019 5457-z.

Simons BW, Durham NM, Bruno TC, Grosso JF, Schaeffer AJ, Ross AE, Hurley PJ, Berman DM, Drake CG, Thumbikat P, Schaeffer EM. A human prostatic bacterial isolate alters the prostatic microenvironment and accelerates prostate cancer progression. J Pathol 2015; 235 (3):478–489. doi: 10.1002/path.4472.

Davidsson S, Molling P, Rider JR, Unemo M, Karlsson MG, Carlsson J, Andersson SO, Elgh F, Soderquis B, Andren O. Frequency and typing of Propionibacterium acnes in prostate tissue obtained from men with and without prostate cancer. Infect Agent Cancer 2016; 11-26. doi: 10.1186/ s13027-016-0074-9

Yu H, Meng H, Zhou F, Ni X, Shen S, Undurti N.D. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch Med Sci 2015; 11(2):385–394.

Buerfent BC, Gondorf F, Wohlleber D, Schumak B, Hoerauf A, Hübner MP. Escherichia coli-induced immune paralysis is not exacerbated during chronic filarial infection. Immunology 2015; 145:150–160. doi: 10.1111/imm.12435.

Souto R, Silva-Boghossian CM, Colombo AP. Prevalence of Pseudomonas aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with chronic periodontal infection. Braz J Microbiol 2014; 45:495–501. doi:10.1590/s1517-83822014000200017.

Churchward CP, Alany RG, Kirk RS, Walker A J, Snyder LAS. Prevention of ophthalmia neonatorum caused by Neisseria gonorrhoeae using a fatty acid based formulation. MBio 2017; 8 e534–e517. doi: 10.1128/mBio.00534-17.

Koroleva EA, Kobets NV, Zayakin ES, Luyksaar SI, Shabalina LA, Zigangirova NA. Small molecule inhibitor of type three secretion suppresses acute and chronic Chlamydia trachomatis infection in a novel urogenital Chlamydia model. Biomed Res Int 2015; 484853. doi:10.1155/2015/484853.

Lee JJ, Moon HS, Lee TY, Hwang HS, Ahn MH, Ryu JS. PCR for diagnosis of male Trichomonas vaginalis infection with chronic prostatitis and urethritis. Korean J Parasitol 2012; 50:157–159. doi: 10.3347/kjp.
2012.50.2.157.

Ma X, Chi C, Fan L, Dong B, Shao X, Xie S, Li M, and Xue W. The microbiome of prostate fluid is associated with prostate cancer. Front Microbiol 2019; 10:1664. doi: 10.3389/fmicb.2019.01664.

Kline KA, Lewis AL. Gram-positive uro pathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol Spectr 2016; 4(2). doi: 10.1128/microbiolspec.

Williams GD. Two cases of urinary tract infection caused by Propionimicrobium lymphophilum. J Clin Microbiol 2015; 53:3077-3080. doi: 10.1128/JCM.00438-15.

Shrestha E, White JR, Yu SH, Kulac I, Ertunc O, De Marzo AM, Yegnasubramanian S, Mangold LA, Partin AW, Sfanos KS. Profiling the urinary microbiome in men with positive versus negative biopsies. J Urol 2018; 199(1):161-171.

Perrone MG, Luisi O, De Grassi A, Ferorelli S, Cormio G, Scilimati A. Translational theragnostic of ovarian cancer: where do we stand? Curr Med Chem 2019; 16 Aug. doi: 10.2174/0929867326666190816232330.

Rosa MI, Silva GD, de Azedo Simoes PW, Souza MV, Panatto AP, Simon CS, Madeira K, Medeiros LR. The prevalence of human papillomavirus in ovarian cancer: a systematic review. Int J Gynecol Cancer 2013; 23:437–441.

Sagarika Banerjee, Tian Tian, Zhi Wei, Natalie Shih, Michael D. Feldman, James C. Alwine, George Coukos, Erle S. Robertson. The ovarian cancer oncobiome. Oncotarget 2017; May 30; 8(22): 36225–36245. Published online 2017 Mar 30. doi: 10.18632/oncotarget.16717.

Karpiński TM. Role of oral microbiota in cancer development. Microorganisms 2019; 7(1). pii: E20. doi: 10.3390/microorga- nisms7010020.

Perera M, Al-Hebshi NN, Speicher DJ. Emerging role of bacteria in oral carcino genesis: a review with special reference to perio-pathogenic bacteria. J Oral Microbiol 2016; 8:32762. doi: 10.3402/jom.v8.32762. eCollection 2016.

Huang GZ, Wu QQ, Zheng ZN, Shao TR, Lv XZ. Identification of Candidate bio- markers and analysis of prognostic values in oral squamous cell carcinoma. Front Oncol 2019; 9:1054. doi: 10.3389/fonc.2019.01054. eCollection 2019.

Hayes RB, Ahn J, Fan X, Peters BA, Ma Y, Yang L, Agalliu I, Burk RD, Ganly I, Purdue MP, Freedman ND, Gapstur SM, and Pei Z. Association of oral microbiome with risk for incident head and neck squamous cell cancer JAMA ONCOL 2018; 4(3):358–365. doi: 10.1001/jamaoncol.2017.4777.

Beck JM, Young VB and Huffnagle GB. The microbiome of the lung. Transl Res 2012; 160:258–266.

Ahn J, Chen CY and Hayes RB. Oral microbiome and oral and gastrointestinal cancer risk. Cancer Causes Control 2012; 23:399–404.

Koren O, Spor A, Felin J, Fak F, Stom-baugh J, Tremaroli V, Behre JC, Knight R, Fagerberg B, Ley RE, and Bäckhed F. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA 2011; 108 (Suppl):4592–4598.

Macgregor ID. Effects of smoking on oral ecology. A review of the literature. Clin Prev Dent 1989; 11:3–7.

Wu J, Peters BA, Dominianni C, Zhang Y, Pei Z, Yang L, Ma Y, Purdue MP, Jacobs EJ, Gapstur SM, Li H, Alekseyenko AV, Hayes RB, Ahn J. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J 2016; 10(10):2435-46. doi:10.1038/ismej.2016.37. Epub 2016 Mar 25.

Leemans CR, Braakhuis BJ and Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer 2011; 11 (1):9-22.

Mager D, Haffajee A, Devlin P, Norris C, Posner M, Goodson J. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, nonrandomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med 2005; 3: 27. doi: 10.1186/1479-5876-3-27.

Nagy KN, Sonkodi I, Szöke I, Nagy E., Newman HN. The microflora associated with human oral carcinomas. Oral Oncol 1998; 34:304–308. doi: 10.1016/S1368-8375(98)80012-2.

Atanasova KR, Yilmaz O. Looking in the Porphyromonas gingivalis cabinet of curiosities: The microbium, the host and cancer association. Mol Oral Microbiol 2014; 29: 55–66.

Galvão-Moreira LV, da Cruz MC. Oral microbiome, periodontitis and risk of head and neck cancer. Oral Oncol 2016; 53: 17–19.

Lee WH, Chen HM, Yang SF, Liang C, Peng CY, Lin FM, Tsai LL, Wu BC, Hsin CH, Chuang CY, Hsin CH, Chuang CY, Yang T, Yang TL, Shinn-Ying Ho SY, Chen WL, Ueng KC, Huang HD, Huang CN, Jong YJ. Bacterial alterations in salivary micro-biota and their association in oral cancer. Sci. Rep 2017; 7 (1): 16540. doi: 10.1038/ s41598-017-16418-x.

Szkaradkiewicz AK, Karpiński TM. Micro-biology of chronic periodontitis. J Biol Earth Sci 2013; 3: M14–M20.

Gholizadeh P, Eslami H, Yousefi M, Asgharzadeh M, Aghazadeh M, Kafil HS. Role of oral microbiome on oral cancers, a review Biomed. Pharmacother 2016; 84: 552–558. doi: 10.1016/j.biopha.2016.09.082.

Yilmaz Ö, Jungas T, Verbeke P, Ojcius DM. Activation of the phosphatidylinositol 3-ki- nase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect Immun 2004; 72: 3743–3751. doi: 10.1128/IAI.72.7.3743-3751.2004.

Mao S, Park Y, Hasegawa Y, Tribble GD, James CE, Handfield M, Stavropoulos MF, Yilmaz Ö, Lamont RJ. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol 2007; 9: 1997–2007. doi: 10.1111/j.1462-5822.2007.00931.x.

Yao L, Jermanus C, Barbetta B, Choi C, Verbeke P, Ojcius D, Yilmaz Ö. Porphyromonas gingivalis infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells. Mol Oral Microbiol 2010; 25:89–101.

Inaba H, Sugita H, Kuboniwa M, Iwai S, Hamada M, Noda T, Morisaki I, Lamont RJ, Amano A. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol 2014; 16: 131–145.

Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014; 149185. doi: 10.1155/2014/149185.

Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014; 20: 1126–1167. doi: 10.1089/ars.2012.5149.

Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR. Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res 2006; 4: 9–14. doi: 10.1158/1541-7786.MC R-05-0126.

Pavlova SI, Jin L, Gasparovich SR, Tao L. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci. Micro-biology 2013; 159: Pt 7 1437–1446.

Marttila E, Bowyer P, Sanglard D, Uittamo J, Kaihovaara P, Salaspuro M, Richardson M, Rautemaa R. Fermentative 2-carbon metabolism produces carcinogenic levels of acetaldehyde in Candida albicans. Mol Oral Microbiol 2013; 28: 281–291.

Bai Y, Shen W, Zhu M, Zhang L, Wei Y, Tang H, Zhao J. Combined detection of estrogen and tumor markers is an important reference factor in the diagnosis and prognosis of lung cancer. J Cell Biochem 2019; 120: 105–114.

Yang Q, Zhang P, Wu R, Lu K, Zhou H. Identifying the best marker combination in CEA, CA125, CY211, NSE, and SCC for lung cancer screening by combining ROC curve and logistic regression analyses: is it feasible? Dis Markers 2018; 2082840. doi: 10.1155/2018/2082840.

Chen R, Ding Z, Zhu L, Lu S, Yu Y. Correlation of clinicopathologic features and lung squamous cell carcinoma subtypes according to the 2015 WHO classification. Eur J Surg Oncol 2017; 43: 2308–2314.

Fang Liu, Jingjing Li, Yubin Guan, Yanfeng Lou, Huiying Chen, Mingyu Xu, Dequan Deng, Jun Chen, Beibei Ni, Lan Zhao, Hongwei Li, Hong Sang, Xiangsheng Cai. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer. Int J Biol Sci 2019; 15 (11): 2381–2392.

O’Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 2016; 13:691–706.

Liu F, Li J, Guan Y, Lou Y, Chen H, Xu M, Deng D, Chen J, Ni B, Zhao L, Li H, Sang H, Cai X. Dysbiosis of the gut microbiome is associated with tumor biomarkers in lung cancer. Int J Biol Sci 2019; 15: (11) 2381–2392.

He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol 2017; 43: 81–95.

McCoy AN, Araujo-Perez F, Azcarate-Peril A, Yeh JJ, Sandler RS, Keku TO. Fusobacterium is associated with colorectal adenomas. PLoS One 2013; 8:e53653. doi: 10.1371/journal.pone.0053653.

Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Bérard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350: 1079–1084. doi: 10.1126/science.aad1329.

Kang J, Chung WH, Lim TJ, Nam YD. Complete genome sequence of the Bifido bacterium animalis subspecies lactis BL3, preventive probiotics for acute colitis and colon cancer. New Microbes New Infect 2017; 19: 34–37.

Jena PK, Sheng L, Nagar N, Wu C, Barile D, Mills DA. Wan YY. Synbiotics Bifidobacterium infantis and milk oligosaccharides are effective in reversing cancer-prone nonalcoholic steatohepatitis using western dietfed FXR knockout mouse models. J Nutr Biochem 2018; 57: 246–54. doi: 10.1016/j.jnutbio.2018.04.007.

Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology 2017; 151: 363–374.

Masood U, Sharma A, Lowe D, Khan R, Manocha D. Colorectal cancer associated with Streptococcus anginosus bacteremia and liver abscesses. Case Rep Gastroenterol 2016; 10:769–774.

Reese AT, Cho EH, Klitzman B, Nichols SP, Wisniewski NA, Villa MM. Antibioticinduced changes in the microbiota disrupt redox dynamics in the gut. Elife 2018; 7. pii: e35987. doi: 10.7554/eLife.35987.

Daniel SG, Ball CL, Besselsen DG, Doetschman T, Hurwitz BL. Functional changes in the gut microbiome contribute to transforming Growth Factor beta-deficient colon cancer. mSystems 2017; 2(5). pii: e00065-17. doi: 10.1128/mSystems.00065-17.

Zhang WQ, Zhao SK, WenLuo J, Dong XP, Hao YT, Li H, Shan L, Zhou Y, Shi HB, Zhang ZY, Peng CL, Zhao XG. Alterations of fecal bacterial Communities in patients with lung cancer. Am J Transl Res 2018; 10: 3171-3185.

Fujio-Vejar S, Vasquez Y, Morales P, Magne F, Vera-Wolf P, Ugalde JA. Navarrete P, Gotteland M. The gut microbiota of healthy Chilean subjects reveals a high abundance of the Phylum Verrucomicrobia. Front Microbiol 2017; 8: 122. doi: 10.3389/ fmicb.2017.01221.

Greathouse KL, White JR, Vargas AJ, Bliskovsky VV, Beck JA, von Muhlinen N, Polley EC, Bowman ED, Khan MA, Robles AI, Cooks T, Ryan BM, Padgett N, Dzutsev AH, Trinchieri G, Pineda MA, Bilke S, Meltzer PS, Hokenstad AN, Stickrod TM, Walther-Antonio MR, Earl JP, Mell JC, Krol JE, Balashov SV, Bhat AS, Ehrlich GD, Valm A, Deming C, Conlan S, Oh J, Segre JA, Harris CC. Interaction between the microbiome and TP53 in human lung cancer. Genome Biol 2018; 19: 123. doi: 10.1186/ s13059-018-1501-6.

Shiels MS, Albanes D, Virtamo J, Engels EA. Increased risk of lung cancer in men with tuberculosis in the alpha-tocopherol, beta-carotene cancer prevention study. Cancer Epidemiol Biomark Prev 2011; 20: 672–678.

Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2010; 2(3): a001016. doi: 10.1101/cshperspect. a001016.

Schwitalla S, Ziegler PK, Horst D, Becker V, Kerle I, Begus-Nahrmann Y Lechel A, Rudolph KL, Langer R, Slotta-Huspenina J, Bader FG, Prazeres da Costa O, Neurath MF, Meining A, Kirchner T, Greten FR. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 2013; 23:93–106. doi: 10.1016/j. ccr.2012.11.014.

Adar SD, Huffnagle GB, Curtis JL. The respiratory microbiome: an underappreciated player in the human response to inhaled pollutants? Ann Epidemiol 2016; 26: 355–359.

Darmawan R, Nakata H, Ohta H. Isolation and evaluation of PAH degrading Bacteria. J Bioremed Biodeg 2015; 6:283. doi: 10.4172/2155-6199.1000283.

Putze J, Hennequin C, Nougayrède JP, Niidome T, Takikawa K, Morimura S. Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 2009; 77(11):4696-4703. doi: 10.1128/ IAI.00522-09.

Guerra L, Guidi R, Frisan T. Do bacterial genotoxins contribute to chronic inflammation, genomic instability and tumor progression? FEBS J 2011; 278: 4577–4588. doi: 10.1111/j.1742-4658.2011.08125.x

Heijink IH, Brandenburg SM, Postma DS, van Oosterhout AJM. Cigarette smoke impairs airway epithelial barrier function and cell–cell contact recovery. Eur Respir J 2012; 39: 419–428. doi: 10. 1183/09031936.00193810.

Pauly JL, Paszkiewicz G. Cigarette smoke, bacteria, mold, microbial toxins, and chronic lung inflammation. J Oncol 2011; 819129. doi: 10.1155/2011/819129.

Clarke TB. Early innate immunity to bacterial infection in the lung is regulated systemically by the commensal microbiota via nod-like receptor ligands. Infect Immun 2014; 82(11):4596–4606.

Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, Suda W, Imaoka A, Setoyama H, Nagamori T, Ishikawa E, Shima T, Hara T, Kado S, Jinnohara T, Ohno H, Kondo T, Toyooka K, Watanabe E, Yokoyama S, Tokoro S, Mori H, Noguchi Y, Morita H1, Ivanov II, Sugiyama T, Nuñez G, Camp JG, Hattori M, Umesaki Y, Honda K. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015; 163(2): 367–380. doi: 10.1016/j.cell.2015.08.058.

Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500 (7461): 232–236.

Bingula R, Filaire M, Radosevic-Robin N, Bey M4, Berthon JY, Bernalier-Donadille A, Vasson MP, Filaire E. Desired turbulence? Gut-lung axis, immunity, and lung cancer. J Oncol 2017; 5035371. doi: 10.1155/2017/5035371.

Liu HX, Tao LL, Zhang J, Zhu YG, Zheng Y, Liu D, Zhou M, Ke H, Shi MM, Qu JM. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer 2018; 142 (4): 769–778. doi: 10.1002/ ijc.31098.

Yan X, Yang M, Liu J, Gao R, Hu J, Li J, Zhang L, Shi Y, Guo H, Cheng J, Razi M, Pang S, Yu X, and Hu S. Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res 2015; 5(10): 3111–3122.

Hosgood HD, Sapkota AR, Rothman N, Rohan T, Hu W, Xu J, Vermeulen R, He X, White JR, Wu G, Wei F, Mongodin EF, Lan Q. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ Mol Mutagen 2014; 55(8) 643–651.

Lee SH, Sung JY, Yong D, Chun J, Kim SY, Song JH, Chung KS, Kim EY, Jung JY, Kang YA, Kim YS, Kim SK, Chang J, Park MS. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer 2016; 102: 89–95. doi: 10.1016/j.lungcan.2016.10.016.

Liu HX, Tao LL, Zhang J, Zhu YG, Zheng Y, Liu D, Zhou M, Ke H, Shi MM, Qu JM. Difference of lower airway microbiome in bi-lateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer 2018; 142 (4): 769–778. doi:10.1002/ ijc.31098.

Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2016; 66(1): 7–30.

Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490(7418): 61–70. doi: 10.1038/nature11412.

Fuhrman BJ, Feigelson HS, Flores R, Gail MH, Xu X, Ravel J, Goedert JJ. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab 2014; 99 (12): 4632–4640. doi: 10.1210/jc.2014-222.

Chan AA, Bashir M, Rivas MN, Duvall K, Sieling PA, Pieber TR, Vaishampayan PA, Love SM, Lee DJ. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci Rep 2016; 6: 28061. doi: 10.1038/srep28061.

Thompson KJ, Ingle JN, Tang X, Chia N, Jeraldo PR. Walther-Antonio MR, Kandimalla KK, Johnson S, Yao JZ, Harrington SC, Suman VJ, Wang L, Weinshilboum RL, Boughey JC, Kocher JP, Nelson H, Goetz MP, Kalari KR. A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS One 2017; 12 (11) e0188873. doi: 10.1371/journal. pone.0188873.

Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, Scott L, O’Hanlon DM, Burton JP, Francis KP, Tangney M, Reid G. Microbiota of human breast tissue. Appl Environ Microbiol 2014; 80(10) 3007–3014.

Urbaniak C, Gloor GB, Brackstone M, Scott L, Tangney M, Reid G. The micro-biota of breast tissue and its association with breast cancer. Appl Environ Microbiol 2016; 82(16): 5039–5048.

Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, Gajer P, Ravel J, Goedert JJ. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med 2012; 10: 253. doi: 10.1186/1479-5876-10-253.

Baumgarten SC, Frasor J. Minireview: Inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol 2012; 26(3): 360–371.

Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M, Sieling PA, Lee DJ. Microbial dysbiosis is associated with human breast cancer. PLoS One 2014; 9(1): e83744 Epub 2014/01/15. doi: 10.1371/ journal.pone.0083744.

Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, Pezet D, Bonnet R. High prevalence of mucosa associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One 2013; 8: e56964. doi:10.1371/journal.po ne.0056964

Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mam-malian cells. Proc Natl Acad Sci USA 2010; 107:11537–11542. doi:10.1073/pnas.1001261107.

Yang J, Tan Q, Fu Q, Zhou Y, Hu Y, Tang S, Zhou Y, Zhang J, Qiu J, Lv Q. Gastrointestinal microbiome and breast cancer: Correlations, mechanisms and potential clinical implications. Breast Cancer 2017; 24: 220– 228. doi: 10.1007/s12282-016-0734-z .

Dabek M, McCrae SI, Stevens VJ, Duncan SH, Louis P. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 2018; 66: 487–495. doi: 10.1111/j.1574-69 41.2008.00520.x

Goedert JJ, Hua X, Bielecka A, Okayasu I., Milne GL, Jones GS, Fujiwara M., Sinha R, Wan Y, Xu X, Ravel J, Shi J, Palm NW, Feigelson HS. Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal micro-biota. Br J Cancer 2018; 18: 471–479. doi: 10.1038/bjc.2017.435.

Hieken TJ, Chen J, Hoskin TL, Walther- Antonio M, Johnson S, Ramaker S, Xiao J, Radisky DC, Knutson KL, Kalari KR, Yao JZ, Baddour LM, Chia N, Degnim AC. The Microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep 2016; 6: 30751. doi: 10.1038/srep30751.

Bowers LW, Brenner AJ, Hursting SD, Tekmal RR, deGraffenried LA. Obesity associated systemic interleukin-6 promotes pre adipocyte aromatase expression via increased breast cancer cell prostaglandin E2 production. Breast Cancer Res Treat 2015; 149: 49–57. doi: 10.1007/s10549-014-3223-0.

De Pedro M, Baeza S, Escudero MT, Dierssen-Sotos T, Gómez-Acebo I, Pollán M, Llorca J. Effect of COX-2 inhibitors and other non-steroidal inflammatory drugs on breast cancer risk: A meta-analysis. Breast Cancer Res Treat 2015; 149: 525–536. doi: 10.1007/s10549-015-3267-9.

Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2007; 2: 328–339. doi: 10.1016/j. chom.2007.09.013.

Pabst O. New concepts in the generation and functions of IgA. Nat Rev Immunol 2012; 12: 821–832. doi: 10.1038/nri3322

Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 2011; 8: 36–45. doi: 10.1038/nchem- bio.741.

Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M, Sieling PA, Lee DJ. Microbial dysbiosis is associated with human breast cancer. PLoS ONE 2014; 9: (1):e83744. doi: 10.1371/journal.pone.0083744.

Carrega P, Bonaccorsi I, Di Carlo E, Morandi B, Paul P, Rizzello V, Cipollone G, Navarra G, Mingari MC, Moretta L, Ferlazzo G. CD56 (bright) perforin (low) non cytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph. J Immunol 2014; 192: 3805–3815. doi: 10.4049/jimmunol.1301889.

Kosaka A, Yan H, Ohashi S, Gotoh Y, Sato A, Tsutsui H, Kaisho T, Toda T, Tsuji NM. Lactococcus lactis subsp. cremoris FC triggers IFN-γ production from NK and T cells via IL -12 and IL -18. Int Immunopharmacol 2012; 14 (4): 729-33. doi: 10.1016/j.in- timp.2012.10.007.

To SQ, Knower KC, Cheung V, Knower KC, Cheung V, Simpson ER, Clyne CD. Transcriptional control of local estrogen formation by aromatase in the breast. J Steroid Biochem Mol Biol 2015; 145:179–186.

Flores R, Shi J, Gail MH, Gajer P, Ravel J, Goedert JJ. Association of fecal microbial diversity and taxonomy with selected enzymatic functions. PLoS ONE 2012; 7:e39745. doi: 10.1371/journal.pone.0039745.
Publicado
2021-11-29
Cómo citar
Arvelo, F., Sojo, F., & Cotte, C. (2021). Cáncer y Microbiota.: Cancer and Microbiota. Investigación Clínica, 62(4), 407-440. https://doi.org/10.22209/IC.v62n4a09