Invest Clin 64(1): 108- 122, 2023 https://doi.org/10.54817/IC.v64n1a08
Corresponding author. Aline Siteneski. Instituto de Investigación y Facultad de Ciencias de la Salud, Universidad
Técnica de Manabí, Portoviejo, 130105, Ecuador. Phone: 00 (593) 959266284. E-mail: aline.siteneski@gmail.com
Neurological manifestations associated with
SARS-CoV-2 infection: an updated review.
Diana Cevallos-Macías1, Gilberto Vizcaíno Salazar1,2 and Aline Siteneski1,2
1Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Técnica de Manabí,
Portoviejo, Ecuador.
2Instituto de Investigación y Facultad de Ciencias de la Salud, Universidad Técnica
de Manabí, Portoviejo, Ecuador.
Keywords: Neurological manifestations; neuroinvasive mechanism; COVID-19;
SARS-CoV-2.
Abstract. SARS-CoV-2 is a single-stranded RNA virus that belongs to the
group of seven coronaviruses that affect humans, and its infection causes the
COVID-19 disease. The association between the COVID-19 condition and risk
factors of neurological manifestations is unclear to date. This review aims
to update the main neurological manifestations associated with SARS-CoV-2
disease. First, we present the hypothesis of the neuroinvasion mechanisms of
SARS-CoV-2. Then, we discuss the possible symptoms related to patients with
COVID-19 infection in the central and peripheral nervous systems, followed by
the perspectives of diagnosis and treatment of possible neurological manifesta-
tions. The hypothesis of the neuroinvasion mechanism includes direct routes,
as the virus crosses the blood-brain barrier or the ACE2 receptor pathway role,
and indirect pathways, such as malfunctions of the immune system and vascular
system dysregulation. Various studies report COVID-19 consequences, such as
neuroanatomic alterations and cognitive impairment, besides peripheral condi-
tions, such as anosmia, ageusia, and Guillain Barré Syndrome. However, the het-
erogeneity of the studies about neurologic damage in patients after COVID-19
infection precludes any generalization of current findings. Finally, new studies
are necessary to understand the adequate diagnosis, therapeutic method of
early treatment, and risk group of patients for neurological manifestations of
COVID-19 post-infection.
Neurological manifestations associated with SARS-CoV-2 infection 109
Vol. 64(1): 108 - 122, 2023
Manifestaciones neurológicas asociadas con la infección
por SARS-CoV-2: una revisión actualizada.
Invest Clin 2023; 64 (1): 108 – 122
Palabras clave: manifestaciones neurológicas; mecanismo neuroinvasivo; COVID-19;
SARS-CoV-2.
Resumen. El SARS-CoV-2 es un virus de ARN monocatenario que perte-
nece al grupo de los siete coronavirus que afectan a los humanos y cuya in-
fección causa la enfermedad COVID-19. La asociación entre la infección por
COVID-19 y factores de riesgo de manifestaciones neurológicas aún no está
clara. Esta revisión tiene como objetivo actualizar la descripción de las princi-
pales manifestaciones neurológicas asociadas a la infección por SARS-CoV-2.
Presentamos la hipótesis de los mecanismos de neuroinvasión del SARS-CoV-2.
Luego discutimos los posibles síntomas asociados a los pacientes con infección
por COVID-19 en el sistema nervioso central y periférico y, posteriormente,
las perspectivas de diagnóstico y tratamiento de las posibles manifestaciones
neurológicas. La hipótesis del mecanismo de neuroinvasión incluye rutas di-
rectas cuando el virus cruza la barrera hematoencefálica o tiene acción vía del
receptor ACE2 y vías indirectas tales como el mal funcionamiento del sistema
inmunitario y la desregulación del sistema vascular. Diversos estudios reportan
consecuencias del COVID-19, como la presencia de alteraciones neuroanató-
micas y deterioro cognitivo, además de condiciones periféricas como anosmia,
ageusia y Síndrome de Guillain Barré. La heterogeneidad de los estudios sobre
el daño neurológico en pacientes después de la infección por COVID-19 impide
cualquier generalización de los hallazgos actuales. Finalmente, son necesarios
nuevos estudios enfocándose en comprender el diagnóstico adecuado, el méto-
do terapéutico de tratamiento temprano y el grupo de riesgo para las manifes-
taciones neurológicas de la pos infección por COVID-19.
Received: 03-09-2022 Accepted: 26-09-2022
INTRODUCTION
The COVID disease emerged in Wu-
han-China in 2019 with rapid transmission
and caused severe consequences in society,
economies, and healthcare systems 1. Until
July 2022, more than 500 million confirmed
cases of COVID-19 and around 6.3 million
deaths have been reported worldwide 2. In
this scenario, the data for 2020 showed that
the United States had the highest number
of cases and deaths from COVID-19 3. The
agent responsible for these high rates of
morbidity and mortality is SARS-CoV-2. This
is a single-stranded RNA virus that belongs
to the group of seven coronaviruses that af-
fect humans 4. The symptomatology associ-
ated with COVID-19 is respiratory, mainly
fever and cough, and the infection can lead
to pneumonia 5.
The association between COVID-19 in-
fection and risk factors of neurological man-
ifestations is unclear to date. Recent studies
report that SARS-CoV-2 causes damage to
the central and peripheral nervous systems6.
Complications such as encephalopathy,
110 Cevallos-Macías et al.
Investigación Clínica 64(1): 2023
stroke, atypical, neurocognitive disorders,
and neuropsychiatric symptom as delirium
and confusion are common in severe infec-
tions 7. Post-infection peripheral conditions
such as anosmia, ageusia, and Guillain Barré
Syndrome have also been previously report-
ed 8. Apparently, the COVID-19 neurologic
manifestation seems familiar and may pres-
ent as the only symptom without any other
manifestation of respiratory system involve-
ment 9.
Brain analysis of images before and af-
ter infection with SARS-CoV-2 suggests that
COVID-19 is associated with neuroanatomic
alterations and cognitive impairment 10. In
fact, a neuroimaging study with 401 patients
with SARS-CoV-2 positive showed structural
alterations of the brain, such as longitudinal
cortical volume loss and changes in regions
11. Due to the wide variation of symptoms, in-
dividuality, and previous comorbidities in the
people, the association between COVID-19
with some neurological manifestations is
challenging. In addition, there exists the ne-
cessity to evaluate the duration and revers-
ibility of neuroimaging changes observed
in studies 10. Thus, the aim of this review is
update of main neurological manifestations
associated with SARS-CoV-2 infection. First,
we present the hypothesis of the neuroinva-
sion mechanisms of SARS-CoV-2. Then, we
discuss the possible symptoms related to
the COVID-19 infection in the central and
peripheral nervous systems. Furthermore,
we show the perspectives diagnosis of neu-
rological manifestation post-SARS-CoV-2 in-
fection.
Literature Data Searching
This review presents a mechanistic
overview of the clinical research regarding
the effects of SARS-CoV-2 on the nervous
system. To review possible symptoms asso-
ciated with the COVID-19 infection in the
central and peripheral nervous systems, we
selected clinical and epidemiological stud-
ies published over two years and two months
(May 2020 to July 2022) period. The search
included original manuscripts and contem-
porary reviews published in English, as-
sessed by specific search terms in the title
or abstract of the manuscripts available
through PubMed. The search terms used
were “SARS-CoV-2 and blood-brain barrier”,
“SARS-CoV-2 and neuroinvasion mecha-
nisms”, “SARS-CoV-2 and peripheral ner-
vous system”, and “SARS-CoV-2 and central
nervous system”. Additionally, “COVID-19
and blood-brain barrier”, “SARS-CoV-2 and
neuroinvasive mechanisms,” “COVID-19 and
peripheral nervous system”, and “COVID-19
and central nervous system” We performed a
specific screening of the clinical studies that
investigated neurobiological manifestations
after SARS-CoV-2 in the central and periph-
eral nervous systems.
Hypothesis for the neuroinvasion
mechanisms of post-infection
by SARS-CoV-2
Although the neuroinvasion mecha-
nism of SARS-CoV-2 is uncharted, some hy-
potheses have been postulated to explain
how the virus crosses the blood-brain barrier
(BBB) 12 (Fig. 1). The BBB is a multilayer
highly effective system that protects the ner-
vous system from an invasion of pathogenic
agents and promotes immune responses 13,14.
Some studies postulate that SARS-CoV-2 can
infect the endothelial cells, which are cells
that compose the BBB and the choroid plex-
us region that produce the cerebrospinal flu-
id 15,16. Through the infection, SARS-CoV-2
accesses the nervous system to the pathway
known as the hematogenous pathway 2, gen-
erating a hyperinflammation stage and loss
of BBB permeability 17,18.
The most accepted hypothesis of the
neuroinvasion mechanism 2 postulates that
the SARS-CoV-2 agent predominantly ex-
ploits human protein receptors to the angio-
tensin-converting enzyme receptor (ACE2
receptor) 19,20. This receptor expresses on
the cell surface of various human cells, in-
cluding glial cells and neurons. Additionally,
to the direct encroach of nerve endings on
Neurological manifestations associated with SARS-CoV-2 infection 111
Vol. 64(1): 108 - 122, 2023
the cell surface, other different transmission
routes could facilitate SARS-CoV-2 arrival
on the nervous system structures 20. The
olfactory-neural transport may be the route
used by SARS-CoV-2 to invade the brain (Fig.
1). A higher expression of ACE2 receptors
in neuronal cells exists in the olfactory cells
21,22. Curiously, in the central nervous sys-
tem, the ACE2 expression level is significant
in pons and medulla oblongata, the neuro-
anatomic regions responsible for the brain’s
respiratory centers 23. The axon of olfactory
neuron cells may form a pathway conducting
SARS-CoV-2 to the brain 22. A study evaluat-
ing ACE2 receptor expression in 85 human
tissues showed 21 different brain regions 23
Another hypothesis of the neuroinva-
sion mechanism of SARS-CoV-2 with indirect
routes includes the immunity pathway with
the malfunction of the immune system and
dysregulation of the vascular system 13,14,24
(Fig. 1). SARS-CoV-2 may infect the immune
cells and produce excessive immune respons-
es that trigger systemic hyperinflammation
25. In response, the immune cells release cy-
tokines that may damage blood vessels and
alter the permeability of the blood-brain
barrier 26. Consequently, infected immune
cells are vehicles for disseminating SARS-
CoV-2 to the nervous system 27. The cerebral
vascular endothelium has a self-regulatory
function in the vascular system. When SARS-
CoV-2 invades the vascular endothelium, it
can elevate cerebral blood pressure, caus-
ing the blood vessel to rupture and reducing
the functionality of the vascular system 28,29.
Fig. 1. Possible neuroinvasion mechanism post-SARS-CoV-2 infection.
112 Cevallos-Macías et al.
Investigación Clínica 64(1): 2023
The classical receptor-mediated endocytosis
pathway may allow the SARS-CoV-2 entry
into epithelial cells. A recent in vitro study
explored the hypothesis that SARS-CoV-2
spreads between permissive and nonper-
missive neuronal cells 30. SARS-CoV-2 likely
uses tunneling nanotubes membranous con-
duits rich in actin for intercellular invading
nonpermissive cells and potentiating infec-
tion in permissive cells. Future studies may
explore the permissive and nonpermissive
pathways of SARS-CoV-2.
Neurobiological manifestations in the
central and peripheral nervous systems
post-infection by COVID-19
In the post-infection by SARS-CoV-2,
the patients may present consequences in
the central and peripheral nervous systems.
However, the relationship between cause
and effect of the neurobiological manifes-
tations is still not elucidated entirely 24,29.
Cerebrovascular complications and psychi-
atry symptoms are reported in the central
system and peripheral nervous systems,
with demyelinating lesions and neuromus-
cular symptoms 31,32. Notably, patients with
comorbidities, severe infection, and ad-
vanced age are the most vulnerable to neu-
rological manifestation post-infection by
SARS-CoV-2 20,29,33-36.
SARS-CoV-2 causes direct damage to
the vascular endothelium and hyperinflam-
mation 37. Several studies have reported that
cerebrovascular disease is a common com-
plication after SARS-CoV-2 infection, with a
prevalence oscillating between 2.3%, 1.4%,
and 6% of infected patients 37-40. The com-
mon cerebrovascular manifestations are
hemorrhagic stroke, ischemic stroke, and
the development of coagulopathies such as
arterial and venous thrombosis 38,39. Brain
biopsies have shown thrombotic microangi-
opathies in critically state patients after CO-
VID-19 infection 38. In addition, hypoxemia
and imbalance of the renin-angiotensin sys-
tem could be involved in the development of
cerebrovascular disease manifestation after
COVID-19 28.
Inflammatory lesions of the brain pa-
renchyma, such as encephalitis, have also
been documented in patients post-infection
with COVID-19 41. A study showed autopsies
with the presence of cerebral edema in pa-
tients positive for the infection 42. The ge-
nome sequencing studies have shown the
presence of viral antigen of SARS-CoV-2 in
cerebrospinal fluid of patients with encepha-
litis and meningitis. In addition, cases of en-
cephalopathy have been reported in positive
COVID-19 patients 43,44. Seizures have also
been a complication in patients hospitalized
for COVID-19 45. Mechanisms such as releas-
ing inflammatory cytokines and stimulating
astrocytes and microglia could be involved in
seizures 46. The stimulation induced by the
union of SARS-CoV-2 with the ACE2 recep-
tor in neurons releases IL-6, a pro-inflam-
matory cytokine. Consequently, COVID-19
causes chronic inflammation, and neuronal
hyperexcitability can induce epilepsy 47.
In the context of neurological manifes-
tations, there have been consequences re-
ported in the peripheral nervous system in
post-COVID-19 patients 48,49. Anosmia (loss
of smell), ageusia (loss of taste), and hypos-
mia (decreased smell) are the main manifes-
tations reported in patients post-SARS-CoV-2
infection 31,48. A study showed that 50% of pa-
tients have taste and smell disorders at the
onset of COVID-19 49. Other work exhibits
a high prevalence of taste disorders 38.5%,
olfactory disorders 35.8%, myalgia 19.3 %
2, and Guillain Barre Syndrome 16.6%12 50.
The clinical symptoms of ageusia and anos-
mia could be considered predictors of SARS-
CoV-2 infection 51. A study conducted by Mao
et al., with a sample of 214 patients, reports
5.1% with anosmia and 5.6% with ageusia
29. Possibly, anosmia and ageusia manifesta-
tions arise from direct injury to olfactory
and taste receptors caused by SARS-CoV-2 52.
Furthermore, peripherally paresthesias,
dyssynergia (loss of motor coordination),
areflexia (loss of reflexes), and flaccid paraly-
sis have been observed in some SARS-CoV-2
positive patients 53. The most frequent mani-
Neurological manifestations associated with SARS-CoV-2 infection 113
Vol. 64(1): 108 - 122, 2023
festation is the Guillain Barré Syndrome,
characterized by an immune system reaction
that attacks peripheral neuron axons. Guil-
lain Barré Syndrome’s initial symptoms are
peripheral weakness and tingling. The pro-
gression of the disease can cause generalized
paralysis54. The diagnosis may confirm Guil-
lain Barré syndrome in an electroneurog-
raphy for the absence of the muscle action
potential in the axons of peripheral neurons
55. The first case reported of this syndrome
associated with COVID-19 was in Wuhan in a
61-year-old woman 56.
It is worth highlighting that muscu-
loskeletal symptoms such as myalgias and
paresthesias are also manifestations of the
peripheral nervous system associated with
SARS-CoV-2 12. An increase in musculoskel-
etal injury markers such as creatine kinase
and lactate dehydrogenase in the blood of
some COVID-19 patients was observed 2. A
study conducted in Wuhan showed that 32%
of patients presented the clinical symptom
of difficulty grasping objects after hospital-
ization for COVID-19 57. Indeed, studies sug-
gest that SARS-CoV-2 leads to deficiencies in
muscle strength and endurance, possibly due
to inflammatory effects 57,58. A case study re-
ports that post-infection patients correlated
the demyelinating lesions with neurologic
complications such as anosmia and dysgeu-
sia 31. On the other hand, despite the nega-
tive quarantine experience, it is impossible
to establish a cause-and-effect relationship
between neuropsychiatric conditions and
COVID-19 disease 59. Individual and environ-
mental factors such as the stress of confine-
ment or a genetic predisposition influenced
by stress can contribute to the development
of different neuropsychiatric disorders ob-
served in patients post- COVID-19 infection.
Neuroimaging studies with manifestations
associated with post-infection by SARS-
CoV-2
Widely used methods of neuroimag-
ing, such as magnetic resonance imaging
(MRI) and computed tomography, have
been utilized to diagnose neurobiologi-
cal manifestations associated with post-
infection by SARS-CoV-2 33,60,61. One study
evaluated with MRI 59 patients positive for
COVID-19 and diagnosed white matter le-
sions (39.0%), subacute infarctions (6.8%),
leukoencephalopathy (10.2%), and multiple
sclerosis (5.1%) 60. Another study found mi-
crohemorrhages related to thrombotic and
hypoxemic microangiopathy in 3.4% of the
patients 61. Recently, a longitudinal study
evaluated 785 participants post-infection by
COVID-19 at different times. The research
found a reduced tissue contrast and gray
matter thickness in the orbitofrontal cortex
and parahippocampal gyrus; additionally to
changes in functionally connected to the
primary olfactory cortex and a reduction in
the global brain. Besides, the work data re-
ported a more significant cognitive decline
over the evaluation period 11. Interestingly,
the study observed abnormalities in limbic
brain regions forming a mainly olfactory net-
work that may indicate a future vulnerability
of the limbic system in particular, including
memory 11.
In computed tomography of critical pa-
tients with post-infection by COVID-19 in-
tracerebral, intraventricular, and subarach-
noid hemorrhage, frontal hypo metabolism,
and cerebellar hypermetabolism were ob-
served 28,62. Curiously, a study evaluating 18
brains of patients who died 0 to 32 days after
the onset of symptoms of COVID-19 in the
histopathological analysis showed only hy-
poxic changes and did not show encephalitis
or other specific brain changes referable to
the infection 63. A study with post-mortem
brain magnetic resonance evaluation of 62
patients dead at a time < 24 hours by CO-
VID-19 demonstrated hemorrhagic and pos-
terior reversible encephalopathy syndrome
brain lesions 64. Additionally, the study
showed that the SARS-CoV-2 seems limited
to olfactory impairment, and the brainstem
evaluation findings do not support a brain-
related contribution to the respiratory dis-
tress of the patients 64.
114 Cevallos-Macías et al.
Investigación Clínica 64(1): 2023
Many studies have focused on searching
for biomarkers to express the central ner-
vous system injury induced by SARS-CoV-2
65-68. Neuronal and astrocyte injury mark-
ers, such as the neurofilament light chain
protein, showed a sustained increase with
maintenance. The glial fibrillary acidic pro-
tein showed an early peak in plasma and a
decrease in the follow-up of 47 positive pa-
tients for COVID-19 66. More recently, higher
serum concentrations of neurofilament light
chains were associated with worse clinical
outcomes in 142 hospitalized patients posi-
tive for COVID-19 67. The serum concen-
trations of neurofilament light chains may
represent a neuroaxonal injury marker that
could predict the extent of neuronal damage
66,67.
Some studies attempt to correlate the
presence of neuroinflammation and vascu-
lar injury in patients post-infection by CO-
VID-19. For example, cerebrospinal fluid
markers of inflammation, such as neopterin
and beta microglobulin, were increased in a
study that evaluated six patients 68. Also, high
levels of antiphospholipid antibodies have
been shown in positive cases of encephalo-
myelitis 69. Finally, studies carried out with
PCR report the presence of anti-SARS-CoV-2
antibodies and SARS-CoV-2 RNA in the cere-
brospinal fluid 70,71. Of note is the presence of
anti-SARS-CoV-2 and SARS-CoV-2 RNA in the
cerebrospinal fluid in patients with severe
complications such as encephalitis, menin-
gitis, and demyelinating disease 71. Current-
ly, it is impossible to affirm the sensitivity of
the positive SARS-CoV-2 PCR method in ce-
rebrospinal fluid. In cases of clinical patient
examination of the cerebrospinal fluid for
viruses such as tick-borne encephalitis, the
diagnosis for PCR is not standard because it
has low sensitivity. In addition, the presence
of the encephalitis virus may be transient in
the cerebrospinal fluid. Therefore, it is not
yet clear which is the best diagnostic ap-
proach to diagnose SARS-CoV-2 CNS infec-
tion or the parainfectious immune reaction
associated with SARS-CoV-2. So far, there
are no reports on the intrathecal synthesis
of SARS-CoV-2-specific IgG 72.
Limitations
Our study also has several limitations.
First, this review’s characteristic and pur-
pose is the literature update. Second, it
does not realize a systematic review of
post-infection by SARS-CoV-2 to assess the
observational and or randomized clinical
trials of literature. This paper did not ex-
plore the link between SARS-CoV-2 and the
neurocognitive deficit. Various factors may
influence the correlation of cognitive disor-
ders in people infected by SARS-CoV-2- For
example, the stress caused by isolation, the
pandemic restrictions, online teaching, and
the return to regular activities 73-75. In addi-
tion, different studies report memory loss,
cognitive deterioration, depression, and
deficits in executive functioning evaluated
in different periods after infecting by CO-
VID-19 74,76-78. Nonetheless, is not possible
to differentiate whether the cognitive im-
pairment found in patients post-COVID-19
infection corresponded to mild cognitive
impairment or dementia 79.
Conclusions and Future Directions
This review discussed the primary
evidence underlining the neurobiologi-
cal manifestations associated with post-
infection by SARS-CoV-2. Of particular
relevance, compelling evidence suggests
that post-infection by SARS-CoV-2 patients
presents neurological manifestations in
the central and peripheral nervous system.
In support, several observational studies
have shown cerebrovascular complications
and inflammatory lesions in the peripheral
system, causing demyelinating lesions and
neuromuscular symptoms 31,32,41. The dura-
tion of neurological manifestations after
COVID-19 infection seems to vary during
the first six months after the illness onset
80. Given this, some studies have investigat-
ed the possible neuroinvasion mechanism
of SARS-CoV-2, and postulated hypotheses
Neurological manifestations associated with SARS-CoV-2 infection 115
Vol. 64(1): 108 - 122, 2023
to explain the virus penetration across the
blood-brain barrier. However, clinical stud-
ies assessing the specific manifestations as-
sociated with post-infection by SARS-CoV-2
are still scarce, and their results are some-
times controversial.
The discrepant results from observa-
tional studies call for the need to conduct
future studies. Considering the risk factors
and comorbidities in patients, this should
be done before affirming the association
between neurological manifestations and
post-infection by SARS-CoV-2. Neurological
complications are associated with the worst
mortality rates 81.
According to a recent systematic analy-
sis, most research published on neurocogni-
tive deficits following SARS-CoV-2 infection re-
cruited subjects before the world’s population
was utterly immunized 82. Another systematic
review showed that non-specific inflammatory
CSF abnormalities were common in patients
with post-COVID-19 infection and nervous sys-
tem syndromes. The study suggests that neuro-
degeneration biomarkers and a link to neuro-
nal damage with long-term consequences are
unknown 83. On the other hand, in brain MRI,
the heterogeneity of the studies about neuro-
logic damage in patients after COVID-19 infec-
tion precludes any generalization of the find-
ings 84. Therefore, new research may assess the
potential of post-infection by SARS-CoV-2 to
cause neurological manifestations in patients
in the current context after worldwide vaccina-
tion. In this sense, there are several publica-
tions related to SARS-CoV-2 vaccination and
neurological disorders such as the thrombotic
thrombocytopenic syndrome 85,86. Finally, the
new studies should focus on research to under-
stand the therapeutic method of early treat-
ment, adequate diagnosis, and risk group for
neurological manifestations post-infection by
SARS-CoV-2 87.
Funding
This study was supported by the Institu-
to de Investigación and Facultad de Ciencias
de la Salud, Universidad Técnica de Manabí,
Portoviejo, Ecuador.
Conflicts of interest
The authors declare that they have no
potential conflicts of interest to disclose re-
lated to this study.
Number ORCID of authors
Diana Cevallos Macías (DCM):
0000-0002-3532-5935
Aline Siteneski (AS):
0000-0001-6692-7253
Gilberto Vizcaíno (GV):
0000-0003-2785-1879
Authorship contribution statement
DCM: conceptualization; original
draft and writing of the manuscript.
GV: writing and preparing the final
draft of the manuscript.
AS: supervision, writing, and prepa-
ring the final draft of the manuscript.
All authors of this paper have read
and approved the final version of the
submitted manuscript.
REFERENCES
1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J,
Liu L, Shan H, Lei C, Hui D, Du B, Li L,
Zeng G, Yuen K, Chen R, Tang C, Wang T,
Chen P, Xiang J, Li S, Wang J, Liang Z,
Peng Y, Wei L, Liu Y, Hu Y, Peng P, Wang J,
Liu J, Chen Z, Li G, Zheng Z, Qiu S, Luo J,
Ye C, Zhu S, Zhong N. Clinical characteris-
tics of coronavirus disease 2019 in China.
N Engl J Med 2020; 382(18): 1708-1720.
https://doi.org/10.1056/NEJMoa2002032.
2. Wan D, Du T, Hong W, Chen L, Que H, Lu S,
Peng X. Neurological complications and infec-
tion mechanism of SARS-CoV-2. Signal Trans-
duct Target Ther 2021; 6(1): 1-11. https://doi.
org/10.1038/s41392-021-00818-7.
116 Cevallos-Macías et al.
Investigación Clínica 64(1): 2023
3. Pei S, Yamana TK, Kandula S, Galanti
M, Shaman J. Burden and characteristics
of COVID-19 in the United States during
2020. Nature 2021; 598(7880): 338–341.
https://doi.org/10.1038/s41586-021-
03914-4.
4. Zhu N, Zhang D, Wang W, Li X, Yang B,
Song J, Zhao X, Huang B, Shi W, Lu R, Niu
P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao
G, Tan W. A novel coronavirus from patients
with pneumonia in China, 2019. N Engl J
Med 2020; 382(8): 727–733. https://doi.
org/10.1056/NEJMoa2001017.
5. Bhatraju PK, Ghassemieh BJ, Nichols M,
Kim R, Jerome KR, Nalla AK, Greninger
A, Pipavath S, Wurfel M, Evans L, Kri-
tek P, West T, Luks A, Gerbino A, Dale
C, Goldman J, O’Mahony S, Mikacenic
C. Covid-19 in critically Ill patients in the
Seattle Region — case series. N Engl J Med
2020; 382(21): 2012–2022. https://doi.
org/10.1056/NEJMoa2004500.
6. Li H, Xue Q, Xu X. Involvement of the ner-
vous system in SARS-CoV-2 infection. Neu-
rotox Res 2020; 38(1): 1–7. https://doi.
org/10.1007/s12640-020-00219-8.
7. Helms J, Kremer S, Merdji H, Clere-Jehl
R, Schenck M, Kummerlen C, Collange
O, Boulay C, Fafi-Kremer S, Ohana M, An-
heim M, Meziani F. Neurologic features in
severe SARS-CoV-2 infection. N Engl J Med
2020; 382(23): 2268–2270. https://doi.
org/10.1056/NEJMc2008597.
8. Valiuddin H, Kalajdzic A, Rosati J, Boehm
K, Hill D. Update on neurological mani-
festations of SARS-CoV-2. West J Emerg
Med 2020; 21(6): 45-51. https://doi.
org/10.5811/westjem.2020.8.48839.
9. Favas TT, Dev P, Chaurasia RN, Chakravar-
ty K, Mishra R, Joshi D, Mishra V, Kumar
A, Singh V, Pandey M, Pathak A. Neurologi-
cal manifestations of COVID-19: a systema-
tic review and meta-analysis of proportions.
Neurological Sciences 2020; 41(12): 3437–
3470. https://doi.org/10.1007/s10072-020
-04801-y.
10. Kremer S, Jäger HR. Brain changes after
COVID-19 — how concerned should we
be? Nat Rev Neurol 2022; 18(6): 321–322.
https://doi.org/10.1038/s41582-022-
00661-6.
11. Douaud G, Lee S, Almagro F, Arthofer
C, Wang C, McCarthy P, Lange F, Anders-
son J, Griffanti L, Duff E, Jbabdi S, Tas-
chler B, Keating P, Winkler A, Collins R,
Matthews P, Allen N, Miller K, Nichols T,
Smith S. SARS-CoV-2 is associated with
changes in brain structure in UK Biobank.
Nature 2022; 604(7907): 697–707. https://
doi.org/10.1038/s41586-022-04569-5.
12. DosSantos M, Devalle S, Aran V, Capra
D, Roque N, Coelho J, Spohr T, Subilha-
ga J, Pereira C, D’Andrea M, Niemeyer
P, Moura V. Neuromechanisms of SARS-
CoV-2: a review. Front Neuroanat 2020;
14(37): 1-10. https://doi.org/10.3389/fna-
na.2020.00037.
13. Koyuncu OO, Hogue IB, Enquist LW. Virus
infections in the nervous system. Cell Host
& Microbe 2013; 13(4): 379–393. https://
doi.org/10.1016/j.chom.2013.03.010.
14. Manglani M, McGavern DB. New advances
in CNS immunity against viral infection.
Curr Opin Virol 2018; 28: 116–126. https://
doi.org/10.1016/j.coviro.2017.12.003.
15. Yang A, Kern F, Losada P, Agam M, Maat C,
Schmartz G, Fehlmann T, Stein J, Schaum
N, Lee D, Calcuttawala K, Vest R, Berdnik
D, Lu N, Hahn O, Gate D, McNerney M,
Channappa D, Cobos I, Ludwig N, Schulz W,
Keller A, Wyss T. Dysregulation of brain and
choroid plexus cell types in severe COVID-19.
Nature 2021; 595(7868): 565–571. https://
doi.org/10.1038/s41586-021-03710-0.
16. Alquisiras I, Peralta I, Alonso L, Zacapala
A, Salmerón E, Aguilera P. Neurological
complications associated with the blood-
brain barrier damage induced by the in-
flammatory response during SARS-CoV-2
infection. Molecular Neurobiology 2021;
58(2): 520–535. https://doi.org/10.1007/
s12035-020-02134-7.
17. Pellegrini L, Albecka A, Mallery D, Kellner
M, Paul D, Carter A, James L, Lancaster
M. SARS-CoV-2 infects the brain choroid
plexus and disrupts the blood-CSF barrier
in human brain organoids. Cell Stem Cell
2020; 27(6): 951-961. https://10.1016/j.
stem.2020.10.001.
18. Wruck W, Adjaye J. SARS-CoV-2 recep-
tor ACE2 is co-expressed with genes rela-
ted to transmembrane serine proteases,
viral entry, immunity and cellular stress.
Neurological manifestations associated with SARS-CoV-2 infection 117
Vol. 64(1): 108 - 122, 2023
Sci Rep 2020; 10(1): 1-12. https://doi.
org/10.1038/s41598-020-78402-2.
19. Hoffmann M, Kleine H, Schroeder S,
Krüger N, Herrler T, Erichsen S, Schier-
gens T, Herrler G, Wu N, Nitsche A, Müller
M, Drosten C, Pöhlmann S. SARS-CoV-2
cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protea-
se inhibitor. Cell 2020; 181(2): 271-280.
https://doi.org/10.1016/j.cell.2020.02.052.
20. Han Y, Yuan K, Wang Z, Liu W, Lu Z, Liu L,
Shi L, Yan W, Yuan J, Li J, Shi J, Liu Z, Wang
G, Kosten T, Bao Y, Lu L. Neuropsychiatric
manifestations of COVID-19, potential neu-
rotropic mechanisms, and therapeutic in-
terventions. Transl Psychiatry 2021; 11(1):
1-16. https://doi.org/10.1038/s41398-021-
01629-8.
21. Bilinska K, Jakubowska P, von Bartheld
CS, Butowt R. Expression of the SARS-
CoV-2 entry proteins, ACE2 and TMPRSS2,
in Cells of the olfactory epithelium: iden-
tification of cell types and trends with
age. ACS Chem Neurosci 2020; 11(11):
1555–1562. https://doi.org/10.1021/
acschemneuro.0c00210.
22. Butowt R, Bilinska K. SARS-CoV-2: olfac-
tion, brain Infection, and the urgent need
for clinical samples allowing earlier virus
detection. ACS Chem Neurosci 2020; 11(9):
1200–1203. https://doi.org/10.1021/
acschemneuro.0c00172.
23. Lukiw W, Pogue A, Hill J. SARS-CoV-2
infectivity and neurological targets in the
brain. Cell Mol Neurobiol 2022; 42(1):
217–224. https://doi.org/10.1007/s10571-
020-00947-7.
24. Najjar S, Najjar A, Chong D, Pramanik B,
Kirsch C, Kuzniecky R, Pacia S, Azhar S.
Central nervous system complications asso-
ciated with SARS-CoV-2 infection: integra-
tive concepts of pathophysiology and case
reports. J Neuroinflammation 2020; 17(1):
2-14. https://doi.org/10.1186/s12974-020-
01896-0.
25. Coperchini F, Chiovato L, Croce L, Magri
F, Rotondi M. The cytokine storm in CO-
VID-19: an overview of the involvement of
the chemokine/chemokine-receptor sys-
tem. Cytokine & Growth Factor Reviews
2020; 53: 25–32. https://doi.org/10.1016/j.
cytogfr.2020.05.003.
26. Mohammadi S, Moosaie F, Aarabi M.
Understanding the immunologic charac-
teristics of neurologic manifestations of
SARS-CoV-2 and potential immunologi-
cal mechanisms. Molecular Neurobiology
2020; 57(12): 5263–5275. https://doi.
org/10.1007/s12035-020-02094-y.
27. Li Z, Liu T, Yang N, Han D, Mi X, Li Y, Liu K,
Vuylsteke A, Xiang H, Guo X. Neurological
manifestations of patients with COVID-19:
potential routes of SARS-CoV-2 neuroinva-
sion from the periphery to the brain. Front
Med 2020; 14(5): 533–541. https://doi.
org/10.1007/s11684-020-0786-5.
28. Sharifi-Razavi A, Karimi N, Rouhani N.
COVID-19 and intracerebral haemorrhage:
causative or coincidental? New Microbes
New Infect 2020; 35: 100669. https://doi.
org/10.1016/j.nmni.2020.100669.
29. Mao L, Jin H, Wang M, Hu Y, Chen S, He
Q, Chang J, Hong C, Zhou Y, Wang D,
Miao X, Li Y, Hu B. Neurologic manifesta-
tions of hospitalized patients with corona-
virus disease 2019 in Wuhan, China. JAMA
Neurol 2020; 77(6): 683 – 690. https://doi.
org/10.1001/jamaneurol.2020.1127.
30. Pepe A, Pietropaoli S, Vos M, Barba-Spaeth
G, Zurzolo C. Tunneling nanotubes provide
a route for SARS-CoV-2 spreading. Sci Adv
2022;8(29):eabo0171. doi:10.1126/sciadv.
abo0171
31. Zanin L, Saraceno G, Panciani P, Renisi
G, Signorini L, Migliorati K, Fontanella
M. SARS-CoV-2 can induce brain and spi-
ne demyelinating lesions. Acta Neurochir
2020; 162(7): 1491-1494. https://doi.
org/10.1007/s00701-020-04374-x.
32. Rogers J, Chesney E, Oliver D, Pollak T,
McGuire P, Fusar P, Zandi M, Lewis G,
David A. Psychiatric and neuropsychiatric
presentations associated with severe coro-
navirus infections: a systematic review and
meta-analysis with comparison to the CO-
VID-19 pandemic. Lancet Psychiatry 2020;
7(7): 611–627. https://10.1016/S2215-
0366(20)30203-0.
33. Xiong W, Mu J, Guo J, Lu L, Liu D, Luo
J, Yang D, Gao H, Zhang Y, Lin M, Shen
S, Zhang H, Chen L, Wang G, Luo F, Li
W, Chen S, He L, Sander J, Zhou D. New
onset neurologic events in people with
COVID-19 in 3 regions in China. Neurolo-
118 Cevallos-Macías et al.
Investigación Clínica 64(1): 2023
gy 2020; 95(11): 1479-1487. https://doi.
org/10.1212/WNL.0000000000010034.
34. Mahammedi A, Saba L, Vagal A, Leali M,
Rossi A, Gaskill M, Sengupta S, Zhang B,
Carriero A, Bachir S, Crivelli P, Pasché A,
Premi E, Padovani A, Gasparotti R. Ima-
ging of neurologic disease in hospitalized
patients with COVID-19: an italian multi-
center retrospective observational study.
Radiology 2020; 297(2): 270-273. https://
doi.org/10.1148/radiol.2020201933.
35. Romero C, Díaz I, Fernández E, Sánchez A,
Layos A, García J, González E, Redondo I,
Perona A, DelValle J, Gracia J, Rojas B, Fe-
ria I, Monteagudo M, Palao M, Palazón E,
Alcahut C, Sopelana G, Moreno Y, Ahmad
J, Segura T. Neurologic manifestations in
hospitalized patients with COVID-19. Neu-
rology 2020; 95(8): 1060-1070. https://doi.
org/10.1212/WNL.0000000000009937.
36. Chua TH, Xu Z, King N. Neurological ma-
nifestations in COVID-19: a systematic re-
view and meta-analysis. Brain Injury 2020;
34(12): 1549-1568. https://doi.org/10.108
0/02699052.2020.1831606.
37. Li Y, Li M, Wang M, Zhou Y, Chang J, Xian
Y, Wang D, Mao L, Jin H, Hu B. Acute ce-
rebrovascular disease following COVID-19: a
single center, retrospective, observational stu-
dy. Stroke Vasc Neurol 2020; 5(3): 279–284.
https://doi.org/10.1136/svn-2020-000431.
38. Tang N, Li D, Wang X, Sun Z. Abnormal
coagulation parameters are associated
with poor prognosis in patients with novel
coronavirus pneumonia. J Thromb Hae-
most 2020; 18(4): 844–847. https://doi.
org/10.1111/jth.14768.
39. Hernández F, Sandoval H, Barbella R, Co-
llado R, Ayo O, Barrena C, Molina J, Gar-
cía J, Lozano E, Alcahut C, Martínez A,
Sánchez A, Segura T. Cerebrovascular di-
sease in patients with COVID-19: neuroima-
ging, histological and clinical description.
Brain 2020; 143(10): 3089–3103. https://
doi.org/10.1093/brain/awaa239.
40. Harapan B, Yoo H. Neurological symp-
toms, manifestations, and complications
associated with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and
coronavirus disease 19 (COVID-19). J Neu-
rol 2021; 268(9): 3059–3071. https://doi.
org/10.1007/s00415-021-10406-y.
41. Moriguchi T, Harii N, Goto J, Harada D,
Sugawara H, Takamino J, Ueno M, Sakata
H, Kondo K, Myose N, Nakao A, Takeda M,
Haro H, Inoue O, Suzuki K, Kubokawa K,
Ogihara S, Sasaki T, Kinouchi H, Kojin H,
Ito M, Onichi H, Shimizu T, Sasaki Y, Eno-
moto N, Ishihara H, Furuya S, Yamamoto
T, Shimada S. A first case of meningitis/
encephalitis associated with SARS-Corona-
virus-2. Int J Infect Dis 2020; 94: 55–58.
https://10.1016/j.ijid.2020.03.062.
42. Remmelink M, Mendonça R, D’Haene N,
Clercq S, Verocq C, Lebrun L, Lavis P,
Racu M, Trépant A, Maris C, Rorive S,
Goffard J, DeWitte O, Peluso L, Vincent J,
Decaestecker C, Taccone F, Salmon I. Uns-
pecific post-mortem findings despite mul-
tiorgan viral spread in COVID-19 patients.
Critical Care 2020; 24(1): 495. https://doi.
org/10.1186/s13054-020-03218-5.
43. Nath A, Smith B. Neurological compli-
cations of COVID-19: from bridesmaid to
bride. Arq Neuropsiquiatr 2020; 78(8):
459–460. https://doi.org/10.1590/0004-
282x20200121.
44. Kholin A, Zavadenko N, Nesterovskiy Y,
Kholina E, Zavadenko A, Khondkaryan
G. Features of neurological manifestations
of the COVID-19 in children and adults.
Zhurnal nevrologii i psikhiatrii imeni SS
Korsakova 2020; 120(9): 114. https://doi.
org/10.17116/jnevro2020120091114.
45. Parihar J, Tripathi M, Dhamija R. Seizures
and epilepsy in times of coronavirus disease
2019 pandemic. J Epilepsy Res 2020; 10(1):
3–7. https://doi.org/10.14581/jer.20002.
46. Nikbakht F, Mohammadkhanizadeh A, Mo-
hammadi E. How does the COVID-19 cause
seizure and epilepsy in patients? The poten-
tial mechanisms. Mult Scler Relat Disord
2020; 46: 1-4. https://doi.org/10.1016/j.
msard.2020.102535.
47. Tufan A, Avanoglu A, Matucci M. CO-
VID-19, immune system response, hyperin-
flammation and repurposing antirheumatic
drugs. Turk J Med Sci 2020; 50(SI-1): 620–
632. https://doi.org/10.3906/sag-2004-168.
48. Padda I, Khehra N, Jaferi U, Parmar M.
The neurological complexities and prog-
nosis of COVID-19. SN Compr Clin Med
2020; 2(11): 2025–2036. https://doi.
org/10.1007/s42399-020-00527-2.
Neurological manifestations associated with SARS-CoV-2 infection 119
Vol. 64(1): 108 - 122, 2023
49. Cherry G, Rocke J, Chu M, Liu J, Lechner
M, Lund V, Kumar B. Loss of smell and tas-
te: a new marker of COVID-19? Tracking re-
duced sense of smell during the coronavirus
pandemic using search trends. Expert Rev
Anti Infect Ther 2020; 18(11): 1165–1170.
https://doi.org/10.1080/14787210.2020.1
792289.
50. López J, Pérez E, León E, Bazán L, Gal-
nares J, Saráchaga A, Briseño M, May R,
Vargas E. Síndrome de Guillain-Barré du-
rante la pandemia de COVID-19: experien-
cia de un centro de referencia en México.
Rev Neurol 2021; 73(09): 315. https://doi.
org/10.33588/rn.7309.2021364.
51. Roland L, Gurrola J, Loftus P, Cheung S,
Chang J. Smell and taste symptombased
predictive model for COVID-19 diagnosis.
Int Forum Allergy Rhinol 2020; 10(7): 832–
838. https://doi.org/10.1002/alr.22602.
52. Vaira L, Salzano G, Deiana G, de Riu G.
Anosmia and ageusia: cmmon fndings in CO-
VID-19 patients. Laryngoscope 2020; 130(7):
1787. https://doi.org/10.1002/lary.28692.
53. Toscano G, Palmerini F, Ravaglia S, Ruiz
L, Invernizzi P, Cuzzoni M, Franciotta D,
Baldanti F, Daturi R, Postorino P, Cavalli-
ni A, Micieli G. Guillain–Barré syndrome
associated with SARS-CoV-2. N Engl J Med
2020; 382(26): 2574–2576. https://doi.
org/10.1056/NEJMc2009191.
54. Sheikh A, Chourasia P, Javed N, Choura-
sia M, Suriya S, Upadhyay S, Ijaz F, Pal
S, Moghimi N, Shekhar R. Association of
Guillain-Barre syndrome with COVID-19
infection: an updated systematic review. J
Neuroimmunol 2021; 355: 2-7. https://doi.
org/10.1016/j.jneuroim.2021.577577.
55. Alberti P, Beretta S, Piatti M, Karant-
zoulis A, Piatti ML, Santoro P, Vigano
M, Giovannelli G, Pirro F, Montisano D,
Appollonio I, Ferrarese C. Guillain-Barré
syndrome related to COVID-19 infection.
Neurol Neuroimmunol Neuroinflamm
2020;7(4): 741. https://doi.org/10.1212/
NXI.0000000000000741.
56. Zhao H, Shen D, Zhou H, Liu J, Chen S.
Guillain-Barré syndrome associated with
SARS-CoV-2 infection: causality or coinci-
dence? Lancet Neurol 2020 May;19(5):383–
384. https://doi.org/10.1016/S1474-4422
(20)30109-5.
57. Disser N, de Micheli A, Schonk M, Konna-
ris M, Piacentini A, Edon D, Toresdahl B,
Casey E, Mendias C. Musculoskeletal con-
sequences of COVID-19. J Bone Joint Surg
2020; 102(14): 1197–1204. https://doi.
org/10.2106/JBJS.20.00847.
58. Zhang X, Cai H, Hu J, Lian J, Gu J, Zhang
S, Ye C, Lu Y, Jin C, Yu G, Jia H, Zhang Y,
Sheng J, Li L, Yang Y. Epidemiological, cli-
nical characteristics of cases of SARS-CoV-2
infection with abnormal imaging findings.
Int J Infect Dis 2020; 94: 81–87. https://
doi.org/10.1016/j.ijid.2020.03.040.
59. Brooks S, Webster R, Smith L, Wood-
land L, Wessely S, Greenberg N, Rubin
G. The psychological impact of quaran-
tine and how to reduce it: rapid review of
the evidence. Lancet 2020; 395(10227):
912–920. https://doi.org/10.1016/S0140-
6736(20)30460-8.
60. Freeman C, Masur J, Hassankhani A, Wolf
R, Levine J, Mohan S. Coronavirus disea-
se (COVID-19) related disseminated leu-
koencephalopathy: a retrospective study of
findings on brain MRI. AJR Am J Roentge-
nol 2021; 216(4): 1046–1047. https://doi.
org/10.2214/AJR.20.24364.
61. Kremer S, Lersy F, Sèze J, Ferré J, Maa-
mar A, Carsin B, Collage O, Bonneville F,
Adam G, Martin G, Rafiq M, Geeraerts T,
Delamarre L, Grand S, Krainik A, Kremer
S, Adam G, Alleg M, Anheim M, Anxionnat
R, Ardellier F, Baloglu S, Bapst B, Ben-
zakoun J, Berge J, Bolognini F, Bonneville
F, Bornet G, Boulay C, Boulouis G, Boutet
C, Brisset J, Caillard S, Carré S, Carsin
B, Collange O, Comby P, Constans J, Da-
vid J, Beaurepaire I, Séze J, Delamarre
L, Desal H, Edjlali M, Fabre X, Fafi S, Fe-
rré J, Feuerstein P, Henry M, Forestier G,
Gaudemer A, Geeraerts T, Grand S, Hans-
mann Y, Heintz A, Helms J, Hemmert C,
Hmeydia G, Jager L, Kazémi A, Kerleroux
B, Khalil A, Krainik A, Lacalm A, Lecler
A, Lecocq C, Lefébvre N, Lersy F, Maamar
A, Martin G, Matthieu M, Megdiche I,
Mertes P, Messié J, Metanbou S, Meyer N,
Meziani F, Mutschler V, Nesser P, Oesterlé
H, Ohana M, Oppenheim C, Pyatigorskaya
N, Rafiq M, Ricolfi F, Saleme S, Schenck
M, Schmitt E, Scheneider F, Sebag N, Ta-
lla Y, Thouant P, Willaume T, Zhu F, Zorn
120 Cevallos-Macías et al.
Investigación Clínica 64(1): 2023
P, Cotton F. Brain MRI findings in severe
COVID-19: a retrospective observational
study. Radiology 2020; 297(2): 242–251.
https://10.1148/radiol.2020202222.
62. Delorme C, Paccoud O, Kas A, Hesters A,
Bombois S, Shambrook P, Boullet A, Doukhi
D, Le Guennec L, Godefroy N, Maatoug R,
Fossati P, Millet B, Navarro V, Bruneteau G,
Demeret S, Pourcher V, Delorme C, Corvol
J, Delattre J, Carvalho S, Sagnes S, Dubois
B, Navarro V, Louapre C, Stojkovic T, Idbaih
A, Rosso C, Gales A, Millet B, Rohaut B,
Bayen E, Dupont S, Bruneteau G, Lehericy
S, Seilhean D, Durr A, Lamari F, Houot M,
Brochard V, Dupont S, Lubetzki C, Seilhean
D, Pradat P, Rosso C, Hoang K, Fontaine B,
Naccache L, Fossati P, Arnulf I, Durr A, Car-
pentier A, Edel Y, Robain G, Thoumie P, De-
gos B, Sharshar T, Alamowitch S, Apartis E,
Peretti C, Ursu R, Dzierzynski N, Bourron
K, Belmin J, Oquendo B, Pautas E, Verny
M, Delorme C, Corvol J, Delattre J, Samson
Y, Leder S, Leger A, Deltour S, Baronnet
F, Gales A, Bombois S, Touat M, Idbaih A,
Sanson M, Sanson M, Dehais C, Houillier C,
Laigle D, Psimaras D, Alenton A, Younan A,
Villain N, Gracli D, Amador M, Bruneteau
G, Louapre C, Mariani L, Mezouar N, Man-
gone G, Meneret A, Hartmann A, Tarrano C,
Bendetowicz D, Pradat P, Baulac M, Sambin
S, Pichit P, Chochon F, Hesters A, Nguyen B,
Procher V, Demoule A, Morawiec E, Mayaux
J, Faure M, Ewenczyk C, Coarelli G, Heinz-
mann A, Stojkovic T, Masingue M, Bassez G,
Navarro V, An I, Worbe Y, Lambrecq V, Debs
R, Musat E, Lenglet T, Lambrecq V, Hanin A,
Chougar L, Shor N, Pyatiforskaya N, Gala-
naud D, Leclercq D, Demeret S, Rohaut B,
Cao A, Marois C, Weiss N, Gassama S, Guen-
nec L, Degos V, Jacquens A, Similowski T,
Morelot C, Rotge J, Saudreau B, Millet B,
Pitron V, Sarni N, Girault N, Maatoug R, Ga-
les A, Leu S, Bayen E, Thivard L, Mokhta-
ri K, Plu I, Goncalves B, Bottin L, Yger M,
Ouvrard G, Haddad R, Ketz F, Lafuente C,
Oasi C, Megabarne B, Herve D, Salman H,
Rametti A, Chalacon A, Herve A, Royer H,
Beauzor F, Maheo V, Laganot C, Minelli C,
Fekete A, Grine A, Biet M, Hilab R, Besnard
A, Bouguerra M, Goudard G, Houairi S, Al-
Youssef S, Pires C, Oukhedouma A, Siuda K,
Malkinson T, Agguini H, Said S, Houot M.
COVID-19- related encephalopathy: a case se-
ries with brain FDG-positron- emission tomo-
graphy/computed tomography findings. Eur J
Neurol 2020; 27(12): 2651–2657. https://doi.
org/10.1111/ene.14478.
63. Solomon I, Normandin E, Bhattacharyya
S, Mukerji SS, Keller K, Ali A, Adams
G, Hornick J, Padera R, Sabeti P. Neuro-
pathological features of Covid-19. N Engl J
Med 2020; 383(10): 989–992. https://doi.
org/10.1056/NEJMc2019373.
64. Coolen T, Lolli V, Sadeghi N, Rovai A,
Trotta N, Taccone F, Creteur J, Henrard S,
Goffard J, Dewitte O, Naeije G, Goldman
S, Tiége X. Early post-mortem brain MRI
findings in COVID-19 non-survivors. Neuro-
logy 2020; 95(14): 2016–2027. https://doi.
org/10.1212/WNL.0000000000010116.
65. Ameres M, Brandstetter S, Toncheva A,
Kabesch M, Leppert D, Kuhle J, Well-
mann S. Association of neuronal injury
blood marker neurofilament light chain
with mild-to-moderate COVID-19. J Neu-
rol 2020; 267(12): 3476–3478. https://doi.
org/10.1007/s00415-020-10050-y.
66. Kanberg N, Ashton N, Andersson L, Yilmaz
A, Lindh M, Nilsson S, Price R, Blennow
K, Zetterberg H, Gisslén M. Neurochemi-
cal evidence of astrocytic and neuronal in-
jury commonly found in COVID-19. Neuro-
logy 2020; 95(12): 1754–1759. https://doi.
org/10.1212/WNL.0000000000010111.
67. Prudencio M, Erben Y, Marquez C, Jansen
K, Franco C, Heckman M, White L, Dun-
more J, Cook C, Lilley M, Song Y, Harlow
C, Oskarsson B, Nicholson K, Wszolek Z,
Hickson L, O’Horo J, Hoyne J, Gendron T,
Meschia J, Petrucelli L. Serum neurofila-
ment light protein correlates with unfavo-
rable clinical outcomes in hospitalized pa-
tients with COVID-19. Sci Transl Med 2021;
13(602): 1-10. https://doi.org/10.1126/
scitranslmed.abi7643.
68. Edén A, Kanberg N, Gostner J, Fuchs D,
Hagberg L, Andersson L, Lindh M, Pri-
ce R, Zetterberg H, Gisslén M. CSF bio-
markers in patients with COVID-19 and
neurological symptoms. Neurology 2020;
96(2): 294-300. https://doi.org/10.1212/
WNL.0000000000010977.
69. Benjamin L, Paterson R, Moll R, Pericleous
C, Brown R, Mehta P, Athauda D, Ziff O,
Neurological manifestations associated with SARS-CoV-2 infection 121
Vol. 64(1): 108 - 122, 2023
Heaney J, Checkley A, Houlihan C, Chou
M, Heslegrave A, Foulkes A, Mummerry
C, Lunn M, Keddie S, Spyer M, Mckinnon
T, Hart M, Carletti F, Jäger H, Manji H,
Zandi M, Werring D, Nastouli E, Simis-
ter R, Solomon T, Zetterberg H, Schott J,
Cohen H, Efthymiou M. Antiphospholipid
antibodies and neurological manifestations
in acute COVID-19: a single-centre cross-
sectional study. EClinicalMedicine 2021;
39: 2589-5370. https://doi.org/10.1016/j.
eclinm.2021.101070.
70. Alexopoulos H, Magira E, Bitzogli K, Ka-
fasi N, Vlachoyiannopoulos P, Tzioufas A,
Kotanidou A, Dalakas M. Anti–SARS-CoV-2
antibodies in the CSF, blood-brain barrier
dysfunction, and neurological outcome.
Neurol Neuroimmunol Neuroinflamm
2020; 7(6): 893. https://doi.org/10.1212/
NXI.0000000000000893.
71. Domingues R, Mendes M, Moura L, Sabino
E, Salarini D, Claro I, Santos D, Jesus J,
Ferreira N, Romano C, Soares C. First case
of SARS-COV-2 sequencing in cerebrospinal
fluid of a patient with suspected demyeli-
nating disease. J Neurol 2020; 267(11):
3154–3156. https://doi.org/10.1007/
s00415-020-09996-w.
72. Romoli M, Jelcic I, Bernard R, García D,
Mancinelli L, Akhvlediani T, Monaco S,
Taba P, Sellner J. A systematic review of
neurological manifestations of SARSCoV-2
infection: the devil is hidden in the details.
Eur J Neurol 2020; 27(9): 1712–1726.
https://doi.org/10.1111/ene.14382.
73. Zhou H, Lu S, Chen J, Wei N, Wang D, Lyu
H, Shi C, Hu S. The landscape of cognitive
function in recovered COVID-19 patients. J
Psychiatr Res 2020; 129: 98–102. https://
doi.org/10.1016/j.jpsychires.2020.06.022.
74. Lamontagne S, Winters M, Pizzagalli D,
Olmstead M. Post-acute sequelae of CO-
VID-19: evidence of mood & amp; cogniti-
ve impairment. Brain Behav Immun Health
2021; 17: 1-11. https://doi.org/10.1016/j.
bbih.2021.100347.
75. Miskowiak K, Johnsen S, Sattler S, Niel-
sen S, Kunalan K, Rungby J, Lapperre T,
Porsberg C. Cognitive impairments four
months after COVID-19 hospital discharge:
pattern, severity and association with ill-
ness variables. Eur Neuropsychopharmacol
2021; 46: 39–48. https://doi.org/10.1016/j.
euroneuro.2021.03.019.
76. Becker J, Lin J, Doernberg M, Stone K,
Navis A, Festa J, Wisnivesky J. Assessment
of cognitive function in patients after CO-
VID-19 infection. JAMA Netw Open 2021;
4(10): 1-4. https://doi.org/10.1001/jama-
networkopen.2021.30645.
77. Davis H, Assaf G, McCorkell L, Wei H,
Low RJ, Re ’em Y, Redfield S, Austin J,
Akrami A. Characterizing long COVID in
an international cohort: 7 months of symp-
toms and their impact. EClinicalMedicine
2021; 38: 1-19. https://doi.org/10.1016/j.
eclinm.2021.101019.
78. Alemanno F, Houdayer E, Parma A, Spina
A, Forno A, Scatolini A, Angelone S, Bru-
gliera L, Tettamanti A, Beretta L, Iannac-
cone S. COVID-19 cognitive deficits after
respiratory assistance in the subacute pha-
se: A COVID-rehabilitation unit experience.
PLoS One 2021; 16(2): 0246590. https://
doi.org/10.1371/journal.pone.0246590.
79. Tavares J, Souza A, Borges J, Oliveira
D, Siqueira J, Sobreira M, Braga P. CO-
VID-19 associated cognitive impairment:
a systematic review. Cortex 2022; 152:
77–97. https://doi.org/10.1016/j.cor-
tex.2022.04.006.
80. Pinzon R, Wijaya V, Jody A, Nunsio P, Bua-
na R. Persistent neurological manifestations
in long COVID-19 syndrome: a systematic
review and meta-analysis. J Infect Public
Health 2022; 15(8): 856–869. https://doi.
org/10.1016/j.jiph.2022.06.013.
81. Mahdizade M, Mohamadi M, Shadab N,
Abbasimoghaddam S, Shekartabar A, Hei-
dary M, Khoshnood S. Neurological ma-
nifestations in patients with COVID-19: a
systematic review and meta-analysis. J Clin
Lab Anal 2022; 36(5): 1-13. https://doi.
org/10.1002/jcla.24403.
82. Houben S, Bonnechère B. The impact of
COVID-19 infection on cognitive function
and the implication for rehabilitation: a sys-
tematic review and meta-analysis. Int J En-
viron Res Public Health 2022; 19(13): 7748.
https://doi.org/10.3390/ijerph19137748.
83. Domingues R, Leite M, Senne C. Cere-
brospinal fluid analysis in patients with
COVID-19-associated central nervous sys-
tem manifestations: a systematic review.
122 Cevallos-Macías et al.
Investigación Clínica 64(1): 2023
Arq Neuropsiquiatr 2022; 80(3): 296–305.
https://doi.org/10.1590/0004-282x-
anp-2021-0117.
84. Araújo S, Araújo C, Silva R, Oliveira L,
Souza N, Miranda D, Simoes A. Imaging
markers of neurologic damage in CO-
VID-19: a systematic review. Curr Med
Chem 2022; 29. https://doi.org/10.2174/0
929867329666220701124945.
85. Vizcaino G. Síndrome trombocitopénico
inmune trombótico posvacunación. ¿Cau-
salidad o casualidad? Especial referencia a
las vacunas Astra-Zeneca COVID-19 (Vax-
zevria®). Gaceta Médica De Caracas,2021;
129(3), 665–675. Recuperado a partir de
http://saber.ucv.ve/ojs/index.php/rev_
gmc/article/view/22888.
86. Esparza J, Vizcaino G, Pujol FH. Trombosis
asociada a vacunas contra la COVID-19 ba-
sadas en vectores adenovirales: implicacio-
nes para la vacunacion en Venezuela. Cien-
tMed 2021; 2(28):01-07. doi.org/1047449/
CM.2021.2.7.
87. Generoso JS, Barichello de Quevedo JL,
Cattani M, Lodetti BF, Sousa L, Collo-
del, A, Diaz, Dal-Pizzol, F. Neurobiology
of COVID-19: how can the virus affect the
brain? Braz J Psychiatry 2021;43(6):650-
664. https://doi:10.1590/1516-4446-2020-
1488.