An application of an inequality of J. M. Aldaz

Una aplicación de una desigualdad de J. M. Aldaz
Mohamed Akkouchi (akkm555@yahoo.fr)
Department of Mathematics, Cadi Ayyad University
Faculty of Sciences-Semlalia, Av. Prince my Abdellah, B.P. 2390
Marrakech - MAROC (Morocco)

Abstract

The aim of this paper is a to give a new proof that Hölder inequality is implied by the Cauchy-Schwarz inequality. Our proof is short and is based on the use of an inequality obtained by J. M. Aldaz in the paper: A stability version of Hölder's inequality, Journal of Mathematical Analysis and Applications, 343, 2(2008), 842-852.

Key words and phrases: Inequalities, Young's inequality, Cauchy-Schwarz inequality, Hölder's inequality.

Resumen

La finalidad de este artículo es dar una nueva demostración de que la desigualdad de Cauchy-Schwarz implica las desigualdades de Hölder. Para establecer nuestro resultado, utilizamos una desigualdad obtenida por J. M. Aldaz en su art??culo: A stability version of Hölder's inequality, Journal of Mathematical Analysis and Applications, 343, 2 (2008), 842852.

Palabras y frases clave: Desigualdades, desigualdad de Young, desigualdad de CauchySchwarz, desigualdad de Hölder.

1 Introduction

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space (μ is a positive measure). For all mesurable functions f, g : $\Omega \mapsto \mathbb{C}$ on Ω, we recall the Hölder's inequality:

$$
\begin{equation*}
\int_{\Omega}|f g| d \mu \leq\left(\int_{\Omega}|f|^{p} d \mu\right)^{\frac{1}{p}}\left(\int_{\Omega}|f|^{q} d \mu\right)^{\frac{1}{q}}, \forall p, q \geq 1 \text { with } \frac{1}{p}+\frac{1}{q}=1 . \tag{H}
\end{equation*}
$$

If $p=q=2$ then we obtain the Cauchy-Schwarz inequality:

$$
\begin{equation*}
\int_{\Omega}|f g| d \mu \leq\left(\int_{\Omega}|f|^{2} d \mu\right)^{\frac{1}{2}}\left(\int_{\Omega}|f|^{2} d \mu\right)^{\frac{1}{2}} \tag{C.S}
\end{equation*}
$$

[^0]Their discrete versions are respectively, given by:

$$
\begin{equation*}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{\frac{1}{p}}\left[\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right]^{\frac{1}{q}}:=\|x\|_{p}\|y\|_{q} \tag{H}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left[\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right]^{\frac{1}{2}}\left[\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right]^{\frac{1}{2}}:=\|x\|_{2}\|y\|_{2} \tag{C.S}
\end{equation*}
$$

for all positive integer n and all vectors $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{K}^{n}$, where the field \mathbb{K} is real or complex.

Easily, we have $(H) \Longrightarrow(C . S)$.
It is natural to raise the question: is the converse true?.
Many connections between classical discrete inequalities were investigated in the book [8], where in particular the equivalence $(H)_{d} \Longleftrightarrow(C . S)_{d}$ was deducted through several intermidiate results.

Also, we notice that A. W. Marshall and I. Olkin pointed out in their book [7] that the CauchySchwarz inequality implies Lyapunov's inequality which itself implies the arithmetic-geometric mean inequality. Their discussions led to the conclusions that, in a sense, the arithmetic-geometric mean inequality, Hölder's inequality, the Cauchy-Schwarz inequality, and Lyapunov's inequality are all equivalent [7, p. 457].

In 2006, Y-C Li and S-Y Shaw [6] gave a proof of Hölder's inequality by using the CauchySchwarz inequality. Their method lies on the fact that the convexity of a function on an open and finite interval is equivalent to continuity and midconvexity.

In 2007, the equivalence between the integral inequalities (H) and $(C-S)$ was studied by C. Finol and M. Wójtowicz in [4]. They gave a proof that $(C-S)$ implies (H) by using density arguments, induction and the conclusions were obtained after three steps of proof.

For many other results concerning to the implication $(C-S) \Longrightarrow(H)$ in the discrete case, the reader is invited to see for instance $[4,5,6,7,8]$.

Recently (see [1]), the author gave a proof of the implication $(C-S) \Longrightarrow(H)$ by using an improvement of Young's inequality.

The aim of this paper is to provide a new (and short) proof of the implication $(H) \Longrightarrow(C . S)$. Our method is quite different from those used in [6] and [4]. Our method is based on the following result of J. M. Aldaz (see [2]).
Theorem 1.1. Let $1<p<\infty$ and let $q=\frac{p}{p-1}$ be its conjugate exponent. If $f \in L^{p}, g \in L^{q}$, $\|f\|_{p},\|g\|_{q}>0$, and $1<p \leq 2$, then

$$
\|f\|_{p}\|g\|_{q}\left(1-\frac{1}{p}\left\|\frac{|f|^{p / 2}}{\|f\|_{p}^{p / 2}}-\frac{|g|^{q / 2}}{\|g\|_{q}^{q / 2}}\right\|_{2}^{2}\right)_{+} \leq\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}\left(1-\frac{1}{q}\left\|\frac{|f|^{p / 2}}{\|f\|_{p}^{p / 2}}-\frac{|g|^{q / 2}}{\|g\|_{q}^{q / 2}}\right\|_{2}^{2}\right)
$$

while if $2 \leq p<\infty$, the terms $\frac{1}{p}$ and $\frac{1}{q}$ exchange their positions in the preceding inequalities.
In Theorem 1.1, $t_{+}=\max \{t, 0\}$ for any real number t. As a consequence of Theorem 1.1, we conclude the following inequality:

$$
\begin{equation*}
\int_{\Omega}|f g| d \mu \leq\|f\|_{p}\|g\|_{q}\left(1-\frac{1}{\max \{p, q\}}\left\|\frac{|f|^{\frac{p}{2}}}{\|f\|_{p}^{\frac{p}{2}}}-\frac{|g|^{\frac{q}{2}}}{\|g\|_{q}^{\frac{q}{2}}}\right\|_{2}^{2}\right) \tag{1}
\end{equation*}
$$

for all $f \in L^{p}, g \in L^{q},\|f\|_{p},\|g\|_{q}>0$, and for all $1<p<\infty$ with $q=\frac{p}{p-1}$ is its conjugate exponent.

2 Proof of the implication: $(C-S) \Longrightarrow(H)$

We avoid the trivial cases, so we suppose that $1<p, q$ with $\frac{1}{p}+\frac{1}{q}=1$. We suppose also that $\|f\|_{p} \neq 0$ and $\|g\|_{q} \neq 0$.

We set $u=\frac{|f| \frac{p}{\frac{p}{2}}}{\|f\|_{p}^{\frac{\nu}{2}}}$ and $v=\frac{\left\lvert\, g g^{\frac{q}{2}}\right.}{\|g\|_{q}^{\frac{1}{2}}}$, then u and v are unit vectors in the real Hilbert space $L_{\mathbb{R}}^{2}(\Omega, \mathcal{F}, \mu)$. We recall that the inner product of $L_{\mathbb{R}}^{2}(\Omega, \mathcal{F}, \mu)$ is given by

$$
<f \mid g>:=\int_{\Omega} f(x) g(x) d \mu(x)
$$

for all $f, g \in L_{\mathbb{R}}^{2}(\Omega, \mathcal{F}, \mu)$.
According to the inequality (1) and the usual Cauchy-Schwarz inequality in the real Hilbert space $L_{\mathbb{R}}^{2}(\Omega, \mathcal{F}, \mu)$, we have successively,

$$
\begin{align*}
\int_{\Omega}|f(x) g(x)| d \mu(x) & \leq\|f\|_{p}\|g\|_{q}\left(1-\frac{1}{\max \{p, q\}}\|u-v\|^{2}\right) \\
& =\|f\|_{p}\|g\|_{q}\left(1-\frac{1}{\max \{p, q\}}\left(\|u\|^{2}+\|v\|^{2}-2<u \mid v>\right)\right) \\
& =\|f\|_{p}\|g\|_{q}\left(\left.1-\frac{2}{\max \{p, q\}}+\frac{2}{\max \{p, q\}}<u \right\rvert\, v>\right) \\
& \leq\|f\|_{p}\|g\|_{q}\left(1-\frac{2}{\max \{p, q\}}+\frac{2}{\max \{p, q\}}\right)=\|f\|_{p}\|g\|_{q} . \tag{2}
\end{align*}
$$

This end the proof.
Remark 2.1. 1. The inequality (2) shows that the equality in Holder's inequality holds if and only if

$$
\frac{|f|^{\frac{p}{2}}}{\|f\|_{p}^{\frac{p}{2}}}=\frac{|g|^{\frac{q}{2}}}{\|g\|_{q}^{\frac{q}{2}}} \quad \mu \text { - a.e. }
$$

That is $|f|^{p}\|g\|_{q}^{q}=|g|^{q}\|f\|_{p}^{p}, \mu$-a.e. on Ω.
2. In [1], for all $f \in L^{p} \backslash\{0\}$ and all $g \in L^{q} \backslash\{0\}$, the following inequality was obtained by using certain improvements to Young's inequality:

$$
\begin{equation*}
\int_{\Omega}|f g| d \mu \leq\left(\frac{1}{p^{2}}+\frac{1}{q^{2}}\right)\|f\|_{p}\|g\|_{q}+\frac{2}{p q}\|f\|_{p}^{1-\frac{p}{2}}\|g\|_{q}^{1-\frac{q}{2}} \int_{\Omega}|f|^{p / 2}|g|^{q / 2} d \mu . \tag{3}
\end{equation*}
$$

It is easy to see that the inequality (3) is equivalent to the following inequality:

$$
\begin{equation*}
\int_{\Omega}|f g| d \mu \leq\|f\|_{p}\|g\|_{q}\left(1-\frac{1}{p q}\left\|\frac{|f|^{\frac{p}{2}}}{\|f\|_{p}^{\frac{p}{2}}}-\frac{|g|^{\frac{q}{2}}}{\|g\|_{q}^{\frac{q}{2}}}\right\|_{2}^{2}\right) \tag{4}
\end{equation*}
$$

for all $f \in L^{p} \backslash\{0\}$ and all $g \in L^{q} \backslash\{0\}$.
The inequality (4) is a variant of the inequality (1). It was obtained by J. M. Aldaz [3] in a different manner.

References

[1] M.Akkouchi. Cauchy-Schwarz inequality implies Hölder's inequality, RGMIA Res. Rep. Coll. 21 (2018), Art. 48, 3pp.
[2] J. M. Aldaz. A stability version of Hölder's inequality, Journal of Mathematical Analysis and Applications. 343 2(2008), 842-852. doi:10.1016/j.jmaa.2008.01.104. Also available at the Mathematics ArXiv: arXiv:math.CA/0710.2307.
[3] J. M. Aldaz. Self improvement of the inequality between arithmetic and geometric means. Journal of Mathematical Inequalities. 3 2(2009), 213-216.
[4] C. Finol and M. Wojtowicz. Cauchy-Schwarz and Hölder's inequalities are equivalent, Divulgaciones Matemáticas. 15(2) (2007), 143-147.
[5] C. A. Infantozzi. An introduction to relations among inequalities. Amer. Math. Soc. Meeting 700, Cleveland, Ohio 1972; Notices Amer. Math. Soc. 14 (1972), A819-A820, 121-122.
[6] Yuan-Chuan Li and Sen-Yen Shaw. A proof of Hölder's inequality using the Cauchy-Schwarz inequality. J. Inequal. Pure and Appl. Math., 7 2(2006), Art. 62.
[7] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications. Academic Press, New York-London, 1979.
[8] D. S. Mtirinovic, J. E. Picaric and A. M. Fink. Classical and New Inequalities in Analysis. Kluwer Academic Publishers, 1993.

[^0]: Received 12/11/2018. Revised 25/01/2019. Accepted 05/05/2019.
 MSC (2010): Primary 26D15; Secondary 26D99.
 Corresponding author: Mohamed Akkouchi

