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Abstract 

A relativistic "free" particle in a one-dimensional box is studied. The impossibility of the 
wavefunction vanishing completely at  the walls of the box is proven. Various physically accept- 
able boundary conditions that allow non-trivial solutions for this problem are proposed. The 
non-relativistic limits of these results are obtained. 
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Condiciones de frontera y el espinor de Dirac 

Resumen 

Se estudia la partícula "libre" en una caja unidimensional. Se prueba la imposibilidad de 
que se anule completamente la función de onda en la paredes de la caja. Se proponen varias 
condiciones de frontera aceptadas fisicarnente que permiten soluciones no triviales para este 
problema. De estos resultados se obtienen los límites no-relativísticos. 

Palabras clave: Caja unidimensional; espinor de Dirac; mecánica cuántica. 

1. Introduction there exists a family of self-adioint exten- 

In non-relativistic quantum mechanics 
a vanishing normal component of the prob- 
ability current is a sufficient condition in or- 
der to obtain an impenetrable boundaq 
surface. This might be accomplished by im- 
posing Dirichlet, Neumann or rnixed bound- 
ary conditions upon the wave function. In 
the well known problem we al1 learn in ele- 
mentíuy quantum mechanics. the "free" 
particle in a one dimensional box, the 
Dirichlet boundary condition = O, is the 
simplest one. With this boundary condition 
the formal "free Schrodinger Hamiltonian" is 
a well defined self-adjoint operator. How- 
ever, besides the above boundary condition, 

sions each labeiied by four p&ameters (1, 
2). 

In relativistic quantum mechanics the 
wave function is a spinor of four complex 
components, which are coupled in a system 
of first order differential equations. Impos- 
ing the Dirichlet condition a t  the boundary 
is too restrictive; it leads to incompatibility 
in the relativistic scattering (3) as  well a s  in 
the energy eigenvalues problem, a s  it will be 
shown below. However, non-trivial solutions 
may be obtained by using appropriate 
boundaq conditions for the wave function 
(4, 5). in such a way that self-adjointness of 
the formal Dirac operator be maintained. 
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To define properly the Hamiltonian, besides 
the formal expression as  a differential op- 
erator, its domain. in particular the bound- 
ary conditions must be specified. In fact, by 
changing the boundary conditions of a given 
operator, one modifies the operator itself 
without changing its formal expression, not 
to mention the risk of loosing the self- 
adjointness property. For example, in the 
Aharonov-Bohm effect, by choosing differ- 
ent boundary conditions, which preserve 
self-adjointness, one obtains different cross 
sections (4). By the way, aside other consid- 
erations, it is the experiment arrangement 
what selects the appropriate observable. 

In this note in the section 11 we give sev- 
eral physically acceptable boundary condi- 
tions, some of which were already proposed 
in scattering problems (4, 5). We find non- 
trivial solutions of the Dirac equation for a 
particle with a fxed mass localized in a box. 
These results. as well as the eigenvalues and 
eigenfunctions for a family of self-adjoint ex- 
tensions of the "free" Dirac hamiltonian 
were obtained in reference (6). 

It is worth to point out that. as far as  we 
know, the problem of the several boundary 
conditions that may be imposed for a "free" 
particle inside a box in relativistic quantum 
mechanics, has not been considered in the 
widely used textbooks about exact solutions 
of the Dirac equation (7-9). However, the 
problem of a Dirac fermion in a one dimen- 
sional box interacting with a scalar solitonic 
potential was considered earlier with peri- 
odic (10). as well a s  with more general 
boundary conditions (1 1) to elucidate the 
phenomenon of fractional fennion number. 
For the case of the Dirac "free" massless op- 
erator, also in 1 + 1 dimensions, eigenvalues 
and eigenfunctions were obtained for a fam- 
ily of self-adjoint extensions in reference (12) 
and the case with a non-zero vector poten- 
tial was examined in reference (13). An- 
other particular solution to this problem 
has been obtained by considering the Dirac 
equation with a Lorentz scalar potential, 
here the rest mass can be thought of a s  an 

x-dependent mass (9). This allow to solve 
the infinite square well problem as  a parti- 
cle with a changing mass that becomes infi- 
nite out of the box, which avoids the Klein 
paradox (14). 

The principal motivation in this peda- 
gogical note is to cal1 the attention on that, 
the boundary conditions used in non- 
relativistic quantum mechanics should not 
be extrapolated to the relativistic case, with- 
out proving before that for them, the relativ- 
istic Hamiltonian will be self-adjoint. 

In the section 11 we verify that it cannot 
be annulled the Dirac spinor at  the bound- 
ary of a not permitted region, in our case the 
walls of a one-dimensional box. We ñnd 
non-trivial solutions upon imposing several 
boundary conditions on the wave function. 
The non-relativistic limit of these results are 
also discussed. 

2. One-dimensional box 

Let us  consider a "free" electron in a 
one-dimensional box in the intervalR = [Q L], 
The three-dimensional Dirac equation for 
stationary states is equivalent to the follow- 
ing coupled equations 

where cr are the Pauli matrices and + = 6:) 
and x = (X:) respectiveiy. that is 

Eliminating x from [ 1 ] and [2], and tak- 
ing +=+(x)  and  X = X ( X )  with 

[E' - ( m ~ ~ ) ~ ] z  
k =  , one obtains 

hc 
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which is independently satisfied by the large 
components. 

The small components may be ob- 
tained by means of [2] 

One of the positive energy solu tions is 
obtained by taking: + , = O and therefore: 
x1 = O. From [4], the general solution for 4 ,  is 

where Al, 4 are complex constants. The so- 
lutions + r' and + i2' are independent and ver- 
i@ the following relation in the interval R. 

From [5] one gets 

hck 
E +mc2 

(qeUCY - ~ e - ~ )  

one obtains the homogeneous system 

whose determinant cannot be zero due to 
[7]. Thus Al = 4 = O, that is, the only solu- 

tion is the trivial one. A similar result is ob- 
tained if y = O at x = L. 

From [5], it can be seen that the vanish- 
ing of the small component X, at  x = O is 

equivalent to - 
dx 

= O. The non existence 

of non trivial solutions for the given bound- 
ary condition is certainly a consequence of 
the fact that [4] is an elliptic equation. so 
that there are no non-trivial solutions if the 
function $, and its derivative X ,  have to van- 
ish simultaneously at the boundaries of the 
interval Q. Certainly, the vanishing of the 
entire relativistic wave function at the begin- 
ning of an impenetrable barrier is not ad- 
rnissible. Though in non-relativistic quan- 
tum mechanics a vanishing wave function 
a t  the boundaries is one of the self-adjoint 
extensions of the "free" Hamiltonian, in rela- 
tivistic quantum mechanics it is not so. In- 
deed, the formal Dirac "free" Hamiltonian 
has not this boundary condition as one of its 
self-adjoint extensions. However, taking as 
zero only the large component is a physicaliy 
acceptable boundary condition, because 
this condition is a self-adjoint extension of 
H ,  (6). 

In the problem of an electron inside a 
one dimensional box, by imposing upon the 
large component 

one obtains inside the intervalo 

with k =  N n / L  N = 1 2  ... 

By using the appendix, it can be seen 
that condition [ l l ]  corresponds, in the non 
relativistic limit, to the familiar condition of 
vanishing the wavefunction at the walls of the 
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box, that is: $ y' (O) = $ Y' (L) = O. Likewise, 
and according to the Schrodinger-Pauli 
problem, the small components of [ 121 are of 

1 

"WRI 

and k -+ k'NR' = 
( 2 m ~ ~ ~ ' ) ~  

the order - 
C h 

from which one obta ins  the  energy 

The Dirac probability density and cur- 
rent are given by 

where is the hermitian conjugate spinor 
and & is the complex conjugate of $. With the 
boundary condition [ 1 11, these quantities 
veriíjr 

j(0) = j(L) = 0 i161 
In this case, the electron is actually en- 

closed inside the box: there is no particle for 
x < O o r x > L .  

There is a variety of other ways of satis- 
fymg [16]; even though the four components 
of the Dirac's spinor cannot be equai to zero 
sirnultaneously. In fact, in addition to [ l l ] ,  
the impenetrability condition j = O can be 
achieved, for example, in any of the following 
three cases: $,(O)=x,(L)=O, +,(L)=x,(O)=O 
and x , (O) = x , (L) = O. The vanishing of the 
relativistic current density at  the walls of the 
box, has been used in the MIT bag model, 
see, e.g. (15). The relativistic boundary con- 
dition used in this model is i-i)paxy=y 
where the minus sign corresponds to x = O 
and the plus sign to x =L. This boundary 
condition in the Dirac renresentation is Dre- 

A 

x2(L) x2(0) 
cisely: - - - - 

+l(L) --$l(o) 
- i. Al1 these conditions, 

adjoint extensions for the "free" Dirac Ha- 
miltonian (6). 

It may be argued that the rnixed bound- 
a ry  condi t ions  $,(O) =x,(L) = O and  
+ , (L) = x , (O) = O are not physicai because 
their symmetry is not the same a t  the walls 
of the box. In fact, the probability density p is 
such that p(0) # p(L); so that these boundary 
conditions are not symmetric and conse- 
quently the corresponding wave functions 

( N  - ;). 
exhibit a set of eigenvalues, k = 

L 
with N = 1, 2 ,3 ,  ... , which are different from 
those of the wave function [12]. In the non- 
relativistic limit these conditions corre- 
spond to a vanishing of $"' a t  x = O (x  = L) 

&INRI - 
and a vanishing of - 

du 
i n x = L ( x = O ) .  

On the other hand, the boundary con- 
dition 

yields the eigenfunction in Q 

which has the same eigenvaiues a s  the wave 
function [12] and satisfies the same rela- 
tions 1151 and [16]. In the non-relativistic 
limit this state corresponds to a vanishing of - 

4) Y' 
du 

at  x = Oand x = L. The spinor [18] de- 

scribes a positive energy electron. however, 
one may consider the charge conjugate of 
this spinor which has a vanishing large 
component, and which may be regarded as  
describing a negative energy positron. 

which can be used if we consider the wails of It is important to emphasize that by 
the box as  impenetrable ban-iers, are self- taking only into account the physicai sym- 

metry [ 1 51, the requirement of impenetrabil- 

Scientific Journal from the Experimental 
Faculty of Sciences, Volume 9 No 1, January-March 2001 



Boundn y conditions and the Dirac cpinor 
- - -~ - - .. - - - - 

ity [ 1 6 ]  and the corresponding energy spec- 
trum, one cannot distinguish between the 
boundary conditions [ 1 11 and [ 171,  that is: 
$ , ( O ) = $ , ( L ) = O  and x , ( O ) = x , ( L ) =  O. Hence, 
the wave functions [ 1 2 ]  and [ 1 8 ]  should be 
regarded a s  equivalent; though not tnvially 
equivalent, inasmuch as  they cannot be 
taken one into the other by means of a sym- 
metry operation which commute with the 
Hamiltonian. Indeed. we consider that it is 
not possible to distinguish physically be- 
tween these two solutions. in spite of that 
they exhibit different probability densities. 
We assume that the probability prediction 
can be verified experimentally only in re- 
gions of size Ax sufficiently large so as to 

- 

ft 
comply the uncertainty relation M p  2 -, 

2 
with Ap corresponding to the quantum state 
not perturbed by the measurement of local- 
ization. According to this criterion. the local- 
ization of the points which in the non relativ- 
istic limit corresponds to a zero probability 
of the stationary wave, is not possible; not to 
mention that, in relativistic quantum me- 
chanics, one cannot localize the electron in a 
region of size less than the Compton wave 
length, because otherwise the electron en- 
e r a  would be suficient for pair production. 
Clearly, L must be much bigger than the 
Compton wave length. 

Finally, the boundary condition 

yields the following eigenfunction in Q 

where: S = arctan -- . In this case the ei- ( "1 
genvalues are obtained from the transcen- 

dental equation: tan(kL) + 

It is worth to point out that these re- 
sults are the same as those obtained in ( 1 4 ) .  
There, the authors give a mathematical jus- 
tification for treating the problem of a parti- 
cle absolutely confined in a box without re- 
quiring the continuity of the wavefunction at  
the walls of the box. Our results coincide 
with those given in ( 1  4) when they tend to in- 
finite the particle mass in the external re- 
gion of the box, where a scalar potential is 
being used. However, we just impose ade- 
quate boundary conditions, such that the 
Hamiltonian be self-adjoint. 

Taking the non-relativistic limit of [ 191,  
a s  is done in the appendix. we obtain: 

h(%)(L) = ($"')(L) and 

The non-relativistic energy eigenvalues 

are obtained from: tan(kINR'~) + - = 0. rz) ) 
Obviously, by eliminating the term of order 
"INR) 

- and causing that the size of the box 
C 

grow, we obtain that the spectrum, the wave 
function and the boundary condition go to 
their non-relativistic values ( 1 4 ) .  

Another way of getting a well defmed 
self-adjoint problem is by extending the do- 
main of H ,  to that of periodic or anti- 
periodic functions in the interval O. In fact, 
we may consider ( 6 ) :  
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The corresponding plane wave eigen- 
functions have the form: 

lieve that the subject of this note may be of 
interest to teachers and students of relativ- 
istic quantum mechanics, a s  far as  we 
know, it has not been sufficiently discussed 
in textbooks and journals. 

and the energy eigenvalues are obtained from: 
2n7t 

k=-with n =  0 ,  11.12, ... forthepenodic 
1, 

Appendix 

- 

(2n - 1)n 
condition, and from k = 

L 
, for the anti- 

periodic one. On the other hand, taking the 
non-relativistic lirnit of these boundary condi- 
tions, we obtain: I $ ! ~ ' ( o ) = ? I $ ( ~ ~ '  , (L), 

, . , . 
4 Y'  4 Y'  

(T)(0) = k(?)(L). where the plus [rni- 

nus] sign corresponds to the non-relativistic 
periodic [anti-periodic] condition. 

For these boundary conditions the 
density current in x = O and x = L is not zero, 
and satisfies j(0) = j(L). In this case the cur- 
rent at  the box walls must be interpreted 
physically. One may say that the walls of the 
box are transparent to the particle, which is 
travelling through the box in a condition of 
resonance. 

Conclusions 

As distinguished from the  non- 
relativistic problem, the relativistic wave 
function at  the boundaries of a not perrnit- 
ted region cannot vanish thoroughly. A nec- 
essary and sufficient condition in order to 
find non-trivial solutions is to impose on the 
wave function boundary conditions that 
makes the Hamiltonian self-adjoint. For 
some of these conditions the probability 
current vanishes at  the walls of the box, they 
are just the conditions which can be used in 
a model of impenetrable barrier. By taking 
the non-relativistic limit of the boundary 
conditions that we have considered, some 
results already known are recovered. We be- 

By considering + = ("]:) andX = L2yx)) 
equations [ l ]  and [2] lead to the system 

Assuming t h a t :  +,(x c) = + 1 ( ~ + ) ,  
x,(x, C) = J C ~ ( X - C )  and E(c) = E(+), the func- 
tions + ,(x-c) and x2(x,-c) satisfy eqns. [Al] 
with c + -c, consequently we may write the 
following expansions in c for 4, (x, c) and 
x2(x* c) (9): 

and for the energy 

Substituting relations [A21 and [A31 in 
[Al] and comparing the terms of lower order, 
we obtain the following system: 

Eliminating X"', we obtain the eigen- 
value Schrodinger equation 
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where: (k'NR')2 = 
2rnlZwR' 

t i2 m 

In the non-relativistic lirnit, the con- 
nection between the components +, and X ,  
of the Dirac spinor: v, and the Schrodinger- 
Pauli function: +y',  is obtained keeping 
only the first term of the expansions [A2], 
and using the first equation of [A4], that is: 

ti 
where: h = - 

2mc' 

With these relations, we may calculate 
uWR) 

the non-relativistic limit up to the order - 
C 

of any quantum mechanicai expression in 
one spatiai dimension. 
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