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Abstract 

The most general relativistic boundaxy conditions (BCs) for a "free" Dirac particle in a one- 
dimensional box are discussed. It is verified that in the Weyl representation there is only one 
family of BCs, labelled with four parameters. This family splits into three subfamilies in the Di- 
rac representation. The energy eigenvalues as well as the corresponding non-relativistic Limits 
of al1 these results are obtained. 
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Condiciones de fronteras más generales 
para una partícula de Dirac en una caja 

Resumen 

Se discuten las condiciones de frontera (BC) relativísticas más generales para una parti- 
cula "libre" de Dirac en una caja unidimensional. Se verifica que en la representación de Weyl 
existe sólo una familia de BC, representadas por cuatro parámetros. Esta familia se divide en 
tres subfamilias en la representación de Dirac. Se obtienen los autovalores de la energía así 
como los correspondientes límites no-relativísticos. 

Palabras clave: Condiciones de frontera; mecánica cuántica; partícula de Dirac; 
representación de Weyl. 

1. Introduction parameters family of BCs for which the 

A "free" particle in a one-dimensional 
box is certainly the canonical exarnple of ele- 
mentary non-relativistic quantum mechan- 
ics. Recently, at least in the physical litera- 
ture (1). the boundary conditions (BCs) that 
forces the energy eigenfunctions to vanish at 
the walls of the box were generalized to a 4- 

Schrodinger "free" hamiltonian is self- 
adjoint. These authors claim that this family 
of BCs is the most general one for a particle 
in a box. However, by using von Neumann's 
theory of self-adjoint extensions of symmet- 
ric operators, as is exposed for example in 
(2), it was shown (3) that maintaining the 
column vectors of the BC that relate linearly 
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the wave function and its derivatives a t  the 
wall of the box, there are three inequivalent 
farnilies of self-adjoint extensions one of 
which is that of reference (1). Moreover, 
these families represent the most general 
manifold of self-adjoint extensions for a 
"free" non-relativistic particle in a box (4). 

In this note, we examine from the rela- 
tivistic point of view this problem by using 
the Dirac equation. In the Weyl representa- 
tion (WR), the most general BCs may be writ- 
ten using only one family which splits into 
three families in the Dirac representation 
(DR), which is the appropiate representation 
in order to take the non-relativistic limit. 

On the other hand, the vanishing of the 
whole spinor a t  the walls yields by itself to 
incompatibility, that is to say, the problem 
has only the trivial solution (6). The sarne re- 
sult has been obtained in the relativistic 
scattering on an impenetrable cylindrical 
solenoid of a finite radius (5, 6). 

A particular solution may be obtained 
by considering the Dirac equation with a 
Lorentz scalar potential (7); here the rest 
mass can be thought of as  an x-dependent 
mass. This pemits  us to solve the infinite 
square well problem as if it is were a particle 
with a changing mass that becomes infinite 
out of the box, so avoiding the Klein para- 
dox (8). 

Different BCs lead to different physicai 
consequences. For relativistic scattering 
problems (6, 9), it has been proposed that 
the vanishing of only the large component of 
the Dirac spinor is a physically acceptable 
BC. It can be easily seen that, for the "free" 
particle in a box, in the non-relativistic limit 
this BC yields the well known Dirichlet BC. 
Furthermore, such BC is only one of the infi- 
nite self-adjoint extensions of the "free" Di- 
rac hamiltonian. This result, as well a s  the 
eigenvalues and eigenfunctions for the fam- 
ily of self-adjoint extensions of the "free" Di- 
rac hamiltonian in the WR. was obtained in 
(10). 

The problem of a Dirac fermion in a 
one-dimensional box interacting with a sca- 
lar solitonic potential, with periodic (1 l ) ,  as 
well a s  with more general BCs (1 2), was con- 
sidered earlier in order to elucidate the phe- 
nomenon of the fractional fermion number. 
For the case of the Dirac "free" massless op- 
erator, also in 1 + 1 dimensions, eigenvalues 
and eigenfunctions have been obtained for a 
family of self-adjoint extensions in ( 13). The 
case with a non-zero vector potential was ex- 
amined in (4). 

In section 2, we write in the WR the 
self-adjoint extensions of the hamiltonian of 
a "free" Dirac particle in a one-dimensional 
box. This family leads to three non- 
equivalent families of self-adjoint exten- 
sions for this operator in the standard or 
DR. In the last part of section 2, for each 
family of self-adjoint extensions, we give the 
energy, eigenvalues as well as several exam- 
ples of BCs which may be of physical inter- 
est. 

In section 3, the non-relativistic limit of 
each family of self-adjoint extensions in the 
DR is obtained, a s  well a s  their non- 
relativistic energy eigenvalues. We write the 
most general non-relativistic BCs obtained 
from the non-relativistic limit of the single 
relativistic family in the WR. 

2. Self-Adjoint extensions 

The Dirac eigenvalue equation for a 
relativistic "free" particle inside a one- 
dimensional box, with fxed wails at  x = O 
and x = L, may be written as: 

where y denotes a two-components spinor 
depending upon x E R =  [O, L]. In the DR: 
a=o, and p=o,. In the W R  a=a, and 
p=a,. 

The spinors dx) and (Hy)(x) belong to a 
dense proper subset of the Hilbert space 
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H = L~ (Q CB L2 (Q, with a scalar product de- 
noted by c , >. The domains of H and its ad- 
joint H* ven@ Dom(H) c Dom(H*): but H 
must be self-adjoint, so, we look for self- 
adjoint extensions of the syrnrnetric opera- 
tor H. 

In the DR, y ,  (x) = (XI:), in the WR we 

write: y ,  (x) = (:::). 1x1 order to change rep- 

resentation, we use the transformation: 
1 1 

cP = - ( v 1 + y 2 )  a n d x = - ( v ,  + y 2 ) .  J2 a 
2.1. Self-adjoint extensions in the WR 

In this representation there exists a 
four-parameters farnily of self-adjoint exten- 
sions of the formal hamiltonian operator 
Hw ' (Hw )a 

with domain given by ( 1 0 ,  12- 14) 

where hereafter a.c. means absolutely con- 
tinuous functions and the symbol "t" de- 
notes the adjoint of a vector or a matrix. The 
unitary matrix U may be written as: 

where:  v = e"e" cose, U = e"ee" sino, 
s = e4'e-':' sin0 and w = -ehe-" cose, with O I 0 
< n ,  0Ip.r.y <2n. 

Let u s  also point out that the same 
four-parameters family of self-adjoint exten- 

sions is valid when a bounded potential is 
present inside the box. 

It can be shown that for every spinor 
y ,  E Dom(Hw),  the  cu r r en t  density 
j ( x )  =cyLo,ylw satisfies a t  the walls of the 
box: j(0) = j(L). and for some of the exten- 
sions (0 = O) it is verified that: j (0)  = j(L) = 0,  
which leads to the relativistic impenetrabil- 
ity condition a t  the walls of the box. 

In the WR the general solution of [ l ]  
can be written as  

J E ~  - (mc2)2  
where k = and c,, c2 are arbi- 

h c 
trary complex constants. The trascendental 
equation for the energy eigenvaiues is 

2.2. Self-adjoint extensions in the DR 

In order to obtain the non-relativistic 
families of BCs, let us  first change to the DR. 
From Hw , with domain given in [3], and us- 
ing the transformation from the WR to DR 
we have 

Then. three farnilies of self-adjoint ex- 
tensions of HD are obtained. Firstly 

whose domain can be written as 
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where 

cos p -cosr cose -e-t.' 

( 
sin0 

+-r! s i n 0  cosp+cosrcos0 1 
1101 

with the restriction: s in  p   sin^ cose + 0. 

Likewise 

acting on the domain 

(HF'V~) E H, vD fulfils: 

[121 

where 

A,, = i(sin p +sinr cose)-' 

( 
COS p + COST cose e-" sin0 

e-" sin 0 cos p -cosr cose 1 
i131 

with the restriction: s in  p +sinr cose # 0. 

Finally, let us consider the cases where the 
above two restrictions are changed to 

sin p-sin7 cose = O and sin p + s i n ~  cose = O. This 

corresponds to the vanishing of the determi- 
nants of the matrices in [v. It can be shown that 
al1 BCs in this new farnily are obtained from [7], 
and are included in some of the following cases: 
i) p=O,t=O,ii) p=O,r=x,iii) p=x ,~=O,  andiv) 

x 
p=x,r=.n; where 028<x, but  0#-, and  

2 
x 

OSy <2x. If0=- then p=0, xand OS.s<2n. We 
2 

write this family as 

with the domain given by 

(HE'v,,) E H, vD fulfils equation 

[7] with the following cases: 

i) p = Q r = O , i i )  p = Q t = . n ,  

iii) p = x, r = 0, and 
.n x 

iv) p = x , ~ = x ;  whit0f- .  I f0=-  
2 2 

In the DR we have three energy eigen- 
vaiues equations, one for each harniltonian 
operator HE', HE', HE). The general solution 
may be written a s  

with d, , d, arbitrary complex constants. The 
eigenvaiues equations are 
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~ - -  

sin2 0-cos2 p+cos2 rcos2 q rent density, has been used in the MIT bag 
where DJ = 

(~ in~+(- l )~s inrcos0) '  ' model of quarks confinement, see, e.g. [15]. 
2 ~ 0 s  Cl In 1 + 1 dimensions this BC is: d-í)Payl= yl, 

FJ = and where the minus sign corresponds to x = O sinp+(-1)' sinr cose 
and the plus sign to x = L. This BC in the DR 

2sin 0 cos y 
GJ = with j = 1.2. is precisely d). 

sin + (-l)J sin7 cos0 

The case j = 1 corresponds to the eigen- 
vaiues equation of H:' and j = 2 to HE' .  For 
the third family, the energy eigenvalues of 
HE' are obtained from 

where the upper sign corresponds to the 
cases i) and ii) and the lower sign to the 
cases iii) and iv), for al1 O. 

2.3. Some typical BCs 

BCs are frequently referred to spinors 
in the DR because of its non-relativistic 
limit. So, we give severai examples of them 
involving v, that also belong to Dom(H,) 

BC: $(O) = O (L) = O E DO~(H;)) 

BC: ~ ( 0 )  = x(L) = O E Dorn(HL1) 

c) 0 = 0  p = r = Q x  O<y<2rr 
BC: $(O) =x(L) = O E Dorn(H;') 

Tt 
d, e = o  ~ = o  r = -  o S y < 2 ~  

2 
BC: x(L) = @(L)andx(O) = @(O) 

E Dorn(H:') n ~orn(H:') 

BC: y, (O) = y, (L) E DO~(H;') 

The BCs a), b), c), and d), can be used if 
we consider the walls of the box as impene- 
trable barriers. that is, for the current den- 
sity: j(x) = qAo,y, to be zero at the wails of 
the box. The vanishing of the normal compo- 
nent (to any surface) of the relativistic cur- 

3. Non-relativistic limits (NRLs) 

As is well known, in the DR the Dirac 
equation [l] for stationary states is equiva- 
lent to the system. 

Assuming that :  $(x c) =O(x-c), 
x(x, C) = %(x,-c) and E(c) = E(<), the functions 
$(x-c) and ~(x,-c) satisfy eqns. [19] with 
c + T, consequently we may write the fol- 
lowing expansions in c for $(x  c) and ~ ( x ,  c) 
(1 6) 

and for the energy 

Substituting relations [20] and [2 11 in 
[ 191 and comparing the terms of lower order, 
the following system is obtained 

Eliminating xNR, we obtain the eigen- 
value Schrodinger equation 
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Here, $, belongs to the Hilbert space 
HNR = L'(Q) with scaiar product denoted by 
e,>. 

In the NRL, the connection between the 
components 4 and x of the Dirac spinor y,, 
and the Schrodinger eigenfunction $,, is 
obtained by keeping only the first term of the 
expansions (201, and using the first equa- 
tion of 1221, that is 

ii 
where: h  = - 

2mc  

Let us now consider the operator H:' . 
In the NRL, the matricial BC included in its 

-A$ (L) $ N R  (L) 
domain becomes: ( h $ h n ) = i A 1 ( $ N R ( o > l  

where the pnmes, hereafter, point out differ- 
entiation with respect to x. The matrix A, is 
anti-hermitian, then iA, = M, is hermitian. 

The first four-parameters family of 
self-adjoint extensions of the  non-  
relativistic "free" harniltonian operator con- 
sists of the operators 

with domain 

Dorn(H& ) = ( 4  NR 1 $ N R  E H~~ 9 4 NI< Elnd 4 b 

a.c. in Q, E HNRt  

4 ,  fulfils: 

Anaiogously, the NRL of the farnilies: 
H:' and H:', lead respectively the operators 
H,!&! and H:;, with their domains 

DO~(H:)={$NR I$NR E H N R ~  $ N R  

a.c. in Q, ( H $ $ ~ ~ )  E HNR. 

$ ,  fulfils: 

N R  (L)) - M h R  (L)) 
$  - ' $ b ( ' )  ' 

where M ,  = -iA2, and finally 

D O ~ ( H N A ) = { ~ N R  14 ,  CHNR, $NR and$hR 

a.c. in Q, (H:$,) E HNR. 

4 ,  fulfils: equation [7] with 

relations [24] for the cases 

given in [15]) i301 

The energy eigenvaiues equations for 
H:' and HE' ,  obtained from the NRL of [ 171 
are respectively given by 

with AkNR = ,,/-. Likewise, the energy ei- 
genvaiues of HE' are 

for the cases given in (181. The transcenden- 
tal equation for the eigenvaiues of HE' is a 
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function f (km) = O, similar to that obtained 
by da Luz and Cheng (1). 

The BC @ven in the Dorn(H;') are simi- 
lar to those known in the literature ( 1). In or- 
der to have the most general BC for a non- 
relativistic "free" particle inside a box, we 
have to consider al1 these three families with 
domains given by: Dom(H;'), DO~(H:') and 
Dorn(HE1) (3). However, it is possible to have 
only one matncial condition that includes 
al1 possible BC for which the  self- 
adjointness of H,, is maintained. This con- 
dition is precisely the NRL of the matricial 
BC included in Dom(H,). 

In fact, this family of four-parameters 
hamiltonians is 

with domain 

a.c. in R, (HNR+NR) E HNRT 

4, fulfils: 

(351 

with U given by [4]. 

AU possible BC for which HNR is self- 
adjoint, are included in Dom(HNR). It is worth 
to note that, as opposed to the results given 
in r eferences (1). al1 these BCs are obtained 
without making inñnite the elements of U. 
The NRLs of the BCs given in section 2.3 are: 

a) "Dinchlet condition" 
+,(O)=+,(L)=O E DO~(H$)  

b) "Neumann condition" 
+,(O)=+h(L) = O E Dom(HN),) 

c) "Mixed condition" 
$,(O)=+L(L)= O E Dorn(HF;) 

d) "NRL in the MIT bag model" 
-h$,(L)=$NR(L) a n d  A$,(O)=+NR(O) 
E Dom(H; ) n DO~(H:; ) 

e) "Periodic condition" 
$ N R ( O = $ m  a n d  +,(O)=$N,(L) 
E Dorn(~:A) 

Obviously, these BC represent differ- 
ent physical situations, in fact, a), b), c), d) 
and e) correspond to different definitions of 
barrier impenetrability, with them, j, van- 
ishes at  the wails of the box. 

4. Conclusions 

The most general BCs to be satisfied by 
the Dirac spinor of a relativistic "free" parti- 
cle in a one-dimensional box in the WR can 
be @ven in terms of only one family of self- 
adjoint extensions of four parameters of the 
"fi-ee" Dirac hamiltonian. In order to obtain 
the NRLs, one must change to the DR. How- 
ever, this procedure leads to three families 
of self-adjoint extensions for the hamilto- 
nian; that is to say, there are three types of 
BCs for which the "free" hamiltonian of the 
DR is self-adjoint. Taking the  non- 
relativistic limit of each one of these fami- 
lies, we have obtained three families of self- 
adjoint extensions for the non-relativistic 
"fi-ee" hamiltonian. It is worth stressing that 
only the three families together provide al1 
possible BCs for a non-relativistic "free" par- 
ticle in a one-dimensional box, and that the 
matrix parameters connecting the spinor 
components a t  the walls of the box take only 
finite values. The corresponding eigenval- 
u e s  equat ions  depending on  four- 
parameters were aiso obtained, as  well as 
their non-relativistic limits. Since in the WR 
it was possible to write down al1 self-adjoint 
extensions in a single family, we have writ- 
ten  the three previously found non- 
relativistic farnilies in terms of only one fam- 
ily . 
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