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Abstract

We present a formalism to incorporate high order effects of the pump field on the four-
wave mixing signal for a two-level system immersed in a thermal bath. We derive analytical ex-
pressions for the nonlinear polarization in terms of the field amplitude and thermal noise pa-
rameters.
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Efectos de alta potencia de bombeo sobre la señal
de mezcla de cuatro ondas para un sistema

de dos niveles acoplados con un baño térmico

Resumen

Presentamos un formalismo para incorporar efectos de alto orden del campo de bombeo
sobre la señal de mezcla de cuatro ondas para un sistema de dos niveles inmerso en un baño
térmico. Derivamos expresiones analíticas para la polarización no lineal en términos de la am-
plitud del campo y de los parámetros del ruido térmico.

Palabras clave: Dos niveles; estocástico; mezcla de cuatro ondas.

Introduction

Four-wave mixing (FWM) is a fruitful
area for the study of ultrafast phenomena,
where two pump fields and one probe field
interact via the third-order susceptibility �

(3)

to generate the signal field (1) Different
radiative and nonradiative processes take
place during the field-matter nonlinear in-
teraction. For optical transitions in com-
pletely isolated atoms or molecules the

dominant contribution to the longitudinal
and transversal relaxation times, T1 and T2,
respectively, comes from radiative effects
associated with reaction or zero-point fluc-
tuations of the free electromagnetic field.
The radiative effects are certainly not the
only source and, usually, they are not the
dominant source of relaxation fluctuations
and incoherences. The effects of such fluc-
tuations (associated to the electromagnetic
fields) have been studied in several nonlin-

Scientific Journal from the Experimental
Faculty of Sciences, Volume 7 Nº 2, May-August 1999

CIENCIA 7(2), 126-132, 1999
Maracaibo, Venezuela

* To whom correspondence should be addressed.



ear optical processes including resonance
fluorescence (2), multiphoton absorption
(3), multiphoton ionization (4) and stimu-
lated Raman scattering (5). In other cases
where the relaxation mechanism involves
changes in the transition frequency of the
molecular system, the equations governing
the time evolution of the Bloch vector are
integro-differential in nature, and defined as
Optical Stochastic Bloch equations (OSBE).
Most of the work done in nonlinear optics
with the Optical Conventional Bloch equa-
tions (OCBE) considers the transition fre-
quency of the two-level system �0 as a pa-
rameter. This assumption is valid in regimes
of weak solute-solvent interaction. However,
if one is interestec in the generation of radia-
tion from a two-level system driven by a
monochromatic field and immersed in a
condensed medium the assumption is no
longer valid. Under those circumstances,
molecular collisions induce frequency
shifts, and due to the nature of the colli-
sions, they lead to a stochastic modulation
of the frequency. This shift in the transition
frequency becomes a function of time and
can be represented as � � �( ) ( )t t0 , where
�( )t comprises all the stochasticity of �.
These fluctuations have been treated by dif-
ferent theories, which correspond to differ-
ent mathematical models for the frequency
fluctuations: Gaussian-Markovian model
(6), non-Markovian models (7), and a
“random-telegraph model” (8).

It is the purpose of this work to general-
ize our previous treatment on the stochas-
ticity of the heat reservoir and its effect on
the two-level molecular system, in FWM
technique, in the case where the pump-field
is considered at all orders. We obtain ana-
lytical expressions for the induced macro-
scopic polarization in a spatial local regime.

Theory

Let us consider a molecule represented
by a two-level system defined by the states
�a> and �b>. As a result of the effect of the

heat reservoir surrounding the molecule,
the transition frequency of the system, � is
well characterized as a stochastic variable.
The time evolution of the population of the
system and the coherence between them is
given by the well known OSBE. This is:
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where we have defined � � �D aa bbt t t( ) ( ) ( );
� D

( )0 is the equilibrium population difference;
� �
� �ba ab

* and
�
� ii (i = a,b) are the transition

and permanent dipole moments, respecti-
vely; finally

�

E t( ) corresponds to the amplitu-
de of the total classical external field, given
by

� � �

E t E t E t( ) ( ) ( )1 2 , where is defined
� �

E t E i t c cm m m m( ) ( )exp( ) . .,� � with
� � � �
E E i k rm m om m( ) ( / )exp ( )� �2 .

Considering Eq. [1] not taking into ac-
count the

�
� ii in the molecule, and making

use of a perturbation expansion to first or-
der in the probe beam (index 2), but at all or-
ders in the pump-field (index 1), we obtain
the following relationships for the coherence
that oscillate at frequency of interest
� � �3 1 22 associated to the FWM gener-
ate signal:
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Here, S is the saturation parameter
that represents a measure of the radiation-
matter intensity coupling, defined by
S T T1

2

1 2 where 1 1 1�
� �

�� �ba E ( )/ is the

Rabi frequency. In comparison with Eq. [2],
but considering one pump field at all orders,
we have studied the effects of the solvent on
the optical properties (9). In Eq. [2] the cru-
cial assumption is that the transition fre-
quency � is the slow variation during the
time needed for the system to reach the
steady-state regime. For simplicity, we con-
sider in the present work the resonant case
for the optical frequencies, this is � �1 2~ ,
and is related with a maximum of the popu-
lation effect (10). Under these circum-
stances, we obtain:

� �
�

� � �

� �

�ba

i

D D
E E E Y( ) ( ) ( ) ( ) ,*

3 2 1 1 1 1 2 1

1
1 [4]

where D D m�
(m=1,2,3); � � �4

2

1ba abT

� D T( )0 3
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� ;Y S T D
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4 2

2 2
/ .

Considering typical magnitudes of the
relaxation times, and transition dipole mo-
ments, associated to organic molecules (11),
it is possible consider that Y

�
1. After

some algebraic manipulations, we can
write:

� � � � � � �ba n
n

M
ni E E E S( ) ( ) ( ) ( ) ( )* ( )

3 1 1 1 1 2 1
0

� [5]

where �n
n n

S n S T( ) ( ) ( ) /1 1 4 2
2 and

�

� �

( )n

n
D D

1
2 2

for n = 0, 1, 2, 3,...

In the above summation M is the order
required to achieve numerical convergence
of the induce coherence. Considering the
shift in the transition frequency it becomes a
quasi-function of time, the average of the co-
herence, over the distribution of � will be
given by:

� � � � � �
� �

�
ba n

n

M
ni E E E S( ) ( ) ( ) ( ) ( )* ( )

3 1 1 1 1 2 1
0

� [6]

In the above equation for the coher-
ence, its ensemble has to be performed over
all realizations of the events �. In order to do
so, van Kampen (12-14) has proposed a
method, where he formally solves the sto-
chastic differential equation as if it were a
deterministic one and then takes an average
over the realizations of the stochastic vari-
able. A different approach is based on taking
the same average before solving the Optical
Bloch equations. In the latter c ase, the set of
differential equations obtained will contain
a multiplicative noise term (which may be
described as an Ornstein-Uhlenbeck pro-
cess (OUP)), the set has to be solved in order
to obtain an equation for the average of
� �ba ( ). In order to solve the OSBE, we have
explored two different approaches. On the
one hand, we have first taken an average of
the OSBE and later on, using a theorem due
to Novikov, we have performed the average
involving the multiplicative noise (15,16).
We have solved the OSBE perturbatively, as
if it they were a set of OCBE, and then we
have taken an average of the formal solution
of the coherence over the realizations of �

(9,17). For those cases when high-power is
considered we have decided to use a method
similar to the second one mentioned above.
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That is, we solved the equations as if they
were deterministic, and only then, acknowl-
edging the fact that � �ba ( ) depends on the
realizations of �, we took its ensemble-
average over the distribution of states with
molecular frequencies within � and � �d .
Thus, solving the stochastic equations and
by taking ensemble-average, instead of tak-
ing a time-average, we have by-passed the
problem of solving the averages involving
the multiplicative noise term.

The ensemble average values, Eq. [6]
can be calculated using a method described
extensively in the previous work (9), and
where the solvent-solute interaction is mod-
eled according to an OUP with intensity 

and exponential correlation function with
decaying rate �. The first term of the summa-
tion in Eq. [6] is given by:

� �

� �
�

( )0

2

1

D D
[7]

In order to take the average in Eq. [7]

we first define the series ~ / ,( )
� � �

n n
D D1

2

for n = 0,1,2,3.., whose average can be cal-
culated as follows. Consider the first term in
the series ~ ,( )

�

0 it average is (9):

~ Re Im( )
�

�

0
0 0

1
i [8]

where 0
21 erf u u( ) exp with

u T i2
1

1
1 22
 ( ) /� ; 
1 1 0� � , [9]

and erf(u) meaning error function evaluated
at u. Full details of this before average, are
given in ref. (9). With this result in hand, it is
possible to evaluate the average given in Eq.
[7], that is:

~ ,( ) ( )
�

�
� �

1 0 [10]

which can be expressed as:
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( ) ( ) ( )Re Im .0 0 0i [11]

After some algebraic manipulations,
and using the tools described in ref. (9), we
can write:
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The other terms of the expansion, Eq.
[6] are of the general form:
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and where the coefficients Am,n can be selec-
ted from Table 1. The Eq. [6] is rewrite as:

� � � � � �
� � �ba ba bai( ) Re ( ) Im ( ) ,3 3 3 [14]

where
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Re ( ) ( ) ( ) ( ) ( ) Im* ( )� � � � � �
� �
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M
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�
�
.

The Fourier component of the total in-
duced macroscopic complex polarization for
inhomogeneous linewidth in general terms,
is calculated from:

� �
P N d g

N

ba ab

ba g

( ) ( , ) ( )

( , )
(
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�

3 0 3 0 0

3 0
0

�

�

)

�
� ab

[15]

where the external bracket � denotes an
average over molecular orientations of the
system and the internal one, represents the
average over the distribution of molecular
frequencies g( )� 0 . In the case studied in the
present article, we have considered a fre-
quency �0, whose value changes due to inte-
ractions with the surrounding media. Here,
an average has to be taken respect to the
possible realizations of the molecular fre-
quency � due to the interactions with the
bath. Hence, an observable variable, for ins-
tance, the complex polarization will be of the
form:

� �
P N ba ab( ) ( , )� � � � �

�3 3 0 [16]

Notice that the formal similarities be-
tween these two expressions for the polari-
zation are striking. However, as it should be
clear by now, the physical situations behind
each case are quite different. The similari-
ties relying only on the fact that an average
over different probability density functions
has to be taken in each case. Using Eq. [14],
we write:
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Within the scalar approximation and
by considering both, the rotating-wave ap-
proximation and the steady-state approxi-
mation, we obtain:

P P PSV coup( ) ( ) ( ),( )� � �3 3 3 [18]

where P SV( ) ( )� 3 is the solvent polarization at
frequency �3; P coup ( )� 3 represents the value

in the line center of the induced macrosco-
pic polarization associated to the FWM pro-
cess that oscillate at frequency �3, which is
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Table 1
Values of the coefficient Am,n

n m=0 m=1 m=2 m=3 m=4 m=5 m=6

0 1

1 1 1

2 3 3 1

3 15 15 6 1

4 105 105 45 6 1

5 945 945 420 141 21 1

6 — — — — — — 1



referred to the coupling process between the
probe and pump fields. Without considering
the tensorial property of the susceptibility,
we write:

P E E Ecoup coup( ) ( ) ( ) ( ) ( )*� � � � � �3 3 1 1 1 1 2 2 [19]

where � �coup ( )3 can be expressed as:

� � � � � �coup coup coupi( ) Re ( ) Im ( )3 3 3 [20]

whereRe ( ) ( ) Im ( )� � �
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ab n

n

M
nS3

0

� �

and Im ( ) ( ) Re .( )� � �
� �

coup
ab n

n

M
nS3

0

� �

In Eq. (20) we can write the two types of
contributions in FWM process. Firstly, the
third-order process (indicated by �0), and
secondly the high-order, associated to the
saturative effects (indicated by �n with n �0).
The real and imaginary parts of � �coup ( )3 will
be expressed as:

Re ( ) ( ) ( )Re[ ]
( )
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3

3
3 3 [21]

and Im ( ) ( ) ( )Im[ ]
( )

Im[ ]� � � � � �� �

coup eff
3

3
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The subscripts Re[�] and Im[�] state
that these magnitudes were derived from
the real and imaginary parts of the suscepti-
bility, respectively. The superscript (3) de-
notes the third order contribution in the
susceptibility, for which the FWM process

occur; the superscript “eff” corresponds to
the effective scalar susceptibility at fre-
quency �3, responsible for the saturative ef-
fects. With al these results at hand, the com-
plex macroscopic polarization, is finally re-
written as:

P P E E

E
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( ) (
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3 3
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where � � � � � �� �

( )
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( )
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( )( ) ( ) ( )3

3
3

3
3

3i and
� � � � � �� �

eff eff effi( ) ( ) ( ).Re[ ] Im[ ]3 3 3

Once the expression for the complex
macroscopic polarization has been ob-
tained, the intensity of nonlinear signal as-
sociated to the FWM process in the local re-
gime, is calculated from:

I
c

P( ) ( )�
�

�
�3 3

2

8
[24]

Eq. [24] is formally exact. However,
their numerical application will be practi-
cally only if the summation, Eq. [5] con-
verges after considering a few terms, and is
valid the optical resonance condition be-
tween the two beams.

Final comments

In this work we have presented a for-
malism to study high-order effects of the
pump-beams in FWM signal for a two-level
system immersed in a thermal bath. The in-
teraction solute-solvent induces frequency
shifts that lead to a stochastic modulation of
the transition Bohr frequency. The present
formalism has practical applicability only

when the expression4 2
2 2

S T D/
�

is less than

one, and for the resonant case, given by
� �1 2~ . Unfortunately, when is not valid
this condition, the solution of the problem
becomes more complicated, by considering
products of different lorentzian curves, of
same spectral width (of the order of 1/T2)
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but centered at different optical frequencies.
It is important to notice that, though the
previous equation for the nonlinear inten-
sity, is valid only in the region of maximum
resonance, it offers the experimentalist the
condition of maximum sensitivity if the
saturation effects of the field are under
study. This condition is related with a maxi-
mum of the population pulsation effect (10).
It is convenient to stress also that the equa-
tion we obtained allows for the identification
of two effects in a separable form. The first
one is identified by the �n S( ), which deter-
mines the effects of the field in the FWM sig-
nal. The second effect is identified by the
function

�

( )n which governs the different
contributions from the effects of the solvent
on the processes in FWM. The previous re-
sults are applicable in the local limit since
we did not take into account the absorption
of the signal with fequency �3 in the optical
length traversed.
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