Fijación de nitrógeno atmosférico en altas montañas tropicales: páramos de Venezuela

  • Ernesto Medina Centro de Ecología, Instituto Venezolano de Investigaciones Científicas. Caracas, Venezuela.
Palabras clave: fijación de N2, páramos, simbiosis leguminosas, actinorrizas, Rhizobium, Frankia

Resumen

En este artículo reviso la información disponible sobre especies de angiospermas fijadoras de nitrógeno (N2) atmosférico en localidades de la cordillera de Mérida en Venezuela, a elevaciones cerca o por encima del límite de la vegetación arbórea en altas montañas. Además, discuto los resultados de un análisis exploratorio sobre fijación biológica de nitrógeno basado en la abundancia natural de 15N y concentración de nitrógeno en suelos y tejido foliar de especies recolectadas a elevaciones contrastantes (2500 y 4000 m de elevación) en sitios localizados entre Santo Domingo y el páramo de Piedras Blancas en el estado Mérida, Venezuela. El artículo tiene como objetivos a) comparar el comportamiento de fijadoras de N2 atmosférico en ambientes de altas montañas tropicales y regiones alpinas templadas y b) destacar las oportunidades de investigación para documentar el ciclo del nitrógeno en esos ambientes.

Descargas

La descarga de datos todavía no está disponible.

Citas

ABADÍN, J., S. J. GONZáLEZ-PRIETO, L. SARMIENTO, M. C. VILLAR y T. CARBALLAS.2002. Successional dynamics of soil characteristics in a long fallow agricultural system of the high tropical Andes. Soil Biology and Biochemistry. 34: 1739–1748.

ABD-ALLA, M. H. 1999. Nodulation and nitrogen fixation of Lupinus species with Bradyrhizobium (lupin) strains in iron-deficient soil. Biology and Fertility of Soils. 28: 407–415.

ANDREwS, M., E. K. JAMES, J. I. SPRENT, R. M. BODDEy, E. GROSS y F. B. DOS REIS JR. 2011. Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecology and Diversity. 4: 131–140.

ARDLEy, J. y J. I. SPRENT. 2021. Evolution and biogeography of actinorhizal plants and legumes: A comparison. Journal of Ecology. 109:1098–1121.

BARNOLA, L. G. y M. G. MONTILLA. 1997. Vertical Distribution of Mycorrhizal Colonization, Root Hairs, and Belowground Biomass in Three Contrasting Sites from the Tropical High Mountains, Merida, Venezuela. Arctic and Alpine Research. 29: 206-212.

BARUCH, Z. 1984. Ordination and Classification of Vegetation along an Altitudinal Gradient in the Venezuelan Páramos. Vegetatio. 55: 115-126.

BAUTISTA GUERRERO, H. H. y M. VALDéS. 2008. Frankia y la simbiosis actinorrízica. Revista Latinoamericana de Microbiología. 50: 9 0–102.

BODDEy, R. M., M. B. PEOPLES, B. PALMER y P. J. DART. 2000. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in Agroecosystems. 57: 235–270.

BORING, L. R., w. T. SwANK, J. B. wAIDE y G. S. HENDERSON. 1988. Sources, fates, and impacts of nitrogen inputs to terrestrial ecosystems: Review and Synthesis. Biogeochemistry. 6: 119–159.

BRICEñO, B. y G. MORILLO. 2002. Catálogo abreviado de las plantas con flores de los páramos de Venezuela. Parte I. Dicotiledóneas (Magnoliopsida). Acta Botánica Venezuelica. 25: 1–46.

BRICEñO, B. y G. MORILLO. 2006. Catálogo de las plantas con flores de los páramos de Venezuela. Parte II. Monocotiledóneas (Liliopsida). Acta Botánica Venezuelica. 29: 89–124.

BUDOwSKI, G. y R. RUSSO. 1997. Nitrogen-fixing trees and nitrogen fixation in sustainable agriculture: Research challenges. Soil Biology and Biochemistry. 2: 767– 770.

CHAIA, E. E., K, HUSS-DANELL, L. G. wALL y D. MyROLD. 2019. Nitrogen fixation by riparian plants belonging to Coriariaceae, Rhamnaceae, and Gunneraceae in Northwest Patagonia. Symbiosis. 77: 237–247.

CRAINE, J. M., E. N. J. BROOKSHIRE, M. D. CRAMER, N. J. HASSELqUIST, K. KOBA, E. MARIN-SPIOTTA y L. wANG. 2015. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil. 396: 1–26.

FARIA, S. M., G. P. LEwIS, J. I. SPRENT y J. M. SUTHERLAND. 1989. Occurrence of nodulation in the Leguminosae. New Phytologist. 111: 607–619.

FERNáNDEZ-PASCUAL, M., J. J. PUEyO, M. R. FELIPE, M. P. GOLVANO y M. M. LUCAS. 2007. Singular features of the Bradyrhizobium-Lupinus symbiosis. Dynamic Soil, Dynamic Plant ©2007 Global Science Books.

HOBBIE, E. A., S. A. MACKO y M. wILLIAMS. 2000. Correlations between foliar d15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia. 122: 273–283.

HOULTON, B. Z., y.-P. wANG, P. M. VITOUSEK y C. B. FIELD. 2008. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature. 454: 327–330.

HUGUET, V., M. GOUy, P. NORMAND, J. F. ZIMPFER y M. P. FERNANDEZ. 2005. Molecular phylogeny of Myricaceae: a reexamination of host–symbiont specificity. Molecular Phylogenetics and Evolution. 34: 557–568.

HUSS-DANELL, K. 1997. Actinorhizal symbioses and their N Phytologist. 136: 375–405.

ZAGUIRRE-MAyORAL, M. L. y V. I. VIVAS. 1996. Symbiotic N -fixation in tropical legume species growing at high geographic elevation. Symbiosis. 21: 49–69.

JACOT, K.A., A. LüSCHER, J. NöSBERGER y U. A. HARTwIG. 2000. Symbiotic N fixation of various legume species along an altitudinal gradient in the Swiss Alps. Soil Biology and Biochemistry. 32: 1043–1052.

JAMES, E. K. 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research. 65: 197-209.

KöRNER, C. 2003. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd Edition Springer Verlag Berlin – Heidelberg.

LLAMBÍ, LD. 2015. Estructura, diversidad y dinámica de la vegetación en el ecotono bosque-páramo: revisión de la evidenciaen la Cordillera de Mérida. Acta Biologica Colombiana. 20(3): 5–19.

LóPEZ-HERNáNDEZ, D., S. SANTAELLA y P. CHACóN. 2006. Contribution of nitrogen- fixing organisms to the N budget in Trachypogon savannas. European Journal of Soil Biology. 42: 43–50.

MARqUINA, M. E., R. M. SKwIERINSKI y B. BRICEñO. 2001-2002. Actividad reductora de acetileno de las bacterias asociadas a las Glumifloras del Páramo, Loma Redonda, Mérida – Venezuela. Pittieria. 2(31): 57–69.

MEDINA, E. y M. L. IZAGUIRRE. 2004. N -fixation in tropical American savannas evaluated by the natural abundance of 15N in plant tissues and soil organic matter. Tropical Ecology. 45: 87–95.

MEDINA, E., E. CUEVAS y A. E. LUGO. 2017. Substrate Chemistry and Rainfall Regime Regulate Elemental Composition of Tree Leaves in Karst Forests. Forests. 8, 182; doi:10.3390/f8060182.

MONASTERIO, M. 1986. Adaptive Strategies of Espeletia in the Andean Desert Paramo. Cap. 3, pp. 48–80 en: Vuilleumier, F. y M. Monasterio (Eds) High Altitude Tropical Biogeography. Oxford University Press and the American Museum of Natural History.

MONTILLA, M., R. A. HERRERA y M. MONASTERIO. 1992. Micorrizasvesículo-arbusculares en parcelas que se encuentran en sucesiónregeneración en los Andes Tropicales. Suelo y Planta. 2: 59–70.

MONTILLA, M., R. HERRERA-PERAZA y M. MONASTERIO. 2002. Influencia de los períodos de descanso sobre la distribución vertical de raíces, micorrizas arbusculares y pelos radicales en páramos andinos venezolanos.Ecotropicos. 15(1): 85–98.

OLIVARES, F. L, V. L. D. BALDANI, V. M. REI, J. I. BALDANI y J. DöBEREINER. 1996. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biology and Fertility of Soils. 21: 197–200.

RANGEL, O. 2000. La región paramuna y franja aledaña en Colombia. En: Rangel, O. (Ed.), Colombia diversidad bíotica III. La región de vida paramuna Unibiblos, Bogotá D.C., pp. 1-23.

SARMIENTO, L., A. ABADÍN, S. GONZáLEZ-PRIETO y T. CARBALLAS. (2012) Assessing and modeling the role of the native legume Lupinus meridanus infertility restoration in a heterogeneous mountain environment of the tropical Andes. Agriculture, Ecosystems and Environment. 159: 29– 39.

SICARDI DE MALLORCA, M. y M. L. IZAGUIRRE-MAyORAL. 1993. A comparative evaluation of the symbiotic N -fixation and physiological performance of thirty six native legume species collected in a tropical savanna during the rainy and dry seasons. Symbiosis. 16: 225–247.

TRINICK M. J. y P. A. HADOBAS. 1989. Biology of the Parasponia-Bradyrhizobium symbiosis. En: Nitrogen Fixation with Non-Legumes, (Skinner FA, Boddey RM y Fendrik I, eds.) Developments in Plant and Soil Sciences Vol. 35, pp. 25–33. Springer, Dordrecht.

TRIPLETT, E. w. 1996. Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant and Soil. 186: 29–38.

VARESCHI, V. 1970. Flora de los páramos de Venezuela. Mérida (Venezuela): Ediciones del Rectorado, Universidad de los Andes; p. 429.

VáSqUEZ, D. L. A., H. BALSLEV y P. SKLENáR. 2015. Human impact on tropical-alpine plant diversity in the northern Andes. Biodiversity and Conservation. 24: 2673–2683.

VIELMA, M. 1999. Caracterización de cepas autóctonas de Bradyrhizobium sp. aisladas de Lupinus spp. Revista Facultad de Agronomía (LUZ). 16: 495–508.

wAGNER, S. C. 2011. Biological Nitrogen Fixation. Nature Education Knowledge. 3(10): 15.

wALTER, H. y E. MEDINA.1969. La temperatura del suelo como factor determinante para la caracterización de los pisos subalpino y alpino en los Andes de Venezuela. Boletín de la Sociedad Venezolana de Ciencias Naturales. 38 (115/116): 201-210.

yANG, y., R. T. w. SIEGwOLF y C. KöRNER. 2015. Species specific and environment induced variation of δ13C and δ15N in alpine plants. Frontiers Plant Science. 6:423. doi: 10.3389/fpls.2015.00423.
Publicado
2023-12-28
Cómo citar
Medina, E. (2023). Fijación de nitrógeno atmosférico en altas montañas tropicales: páramos de Venezuela. Boletín Del Centro De Investigaciones Biológicas, 57(2), 129-145. https://doi.org/10.5281/zenodo.10499054