BOLETIN DEL CENTRO DE INVESTIGACIONES BIOLOGICAS VOLUMEN 24, 1990, pp. 1-50.

INVENTARIO DE LA ICTIOFAUNA DEL RIO PALMAR Y AFLUENTES, ESTADO ZULIA, VENEZUELA.

CLARK L. CASLER¹, ELSA GONZALEZ BENCOMO¹,
MARGARITA ROMERO², JESUS TOLEDO² Y JOSE M. BRITO¹

¹Centro de Investigaciones Biológicas Facultad de Humanidades y Educación Universidad del Zulia Apartado No. 526 Maracaibo - Venezuela

²Ministerio del Ambiente y Recursos Naturales Renovables, Región 21 Maracaibo, Venezuela

RESUMEN

Para precisar el impacto que pudiera ejercer la construcción del Embalse El Diluvio sobre la ictiofauna del Río Palmar y afluentes, se realizó un inventario de las especies y se colectaron datos de su importancia ecológica y socioeconómica. Se efectuaron 23 salidas de campo durante 1989, en nueve estaciones de muestreo. arte de pesca se empleó atarraya, de diferentes aperturas de malla. Se colectaron 47 especies (2113 individuos); entre éstas las más abundantes fueron Prochilodus reticulatus (15.6%), Lasiancistrus maracaiboensis (15.1%), Astyanax magdalenae (13.3%), Astyanax fasciatus viejita (11.9%) y Pimelodus coprophagus (5.7%). Las familias más representativas fueron: Loricariidae (13 especies), Characidae (10 especies) y Pimelodidae (6 especies). De las 47 especies colectadas, 15 son reportadas por primera vez para este río. En la cuenca alta se encontraron 9 especies que no estaban presentes en otras zonas del río. Existe un total de 63 especies (las colectadas en este estudio y por otros) que representan el 54% de las especies registradas para la Cuenca del Lago de Maracaibo. Posiblemente, la única especie endémica sea Volichancistrus sp. La diversidad fue semejante en la zona baja y media pero mayor que en la zona alta. Individuos maduros se apreciaron en mayo, julio, septiembre y octubre, lo cual se corresponde con las dos épocas de lluvia. Prochilodus reticulatus es el recurso más importante en el Río Palmar debido a su abundancia, amplia distribución e importancia comercial.

Palabras claves: Ictiofauna; Inventario; Venezuela, Estado Zulia; Río Palmar; Perijá.

ABSTRACT

INVENTORY OF THE FISH OF THE PALMAR RIVER AND ITS TRIBUTARIES, ZULIA STATE, VENEZUELA

To better evaluate the future impact that the Diluvio Reservoir may have upon the fisheries of the Palmar River and its tributaries, an inventory of the fish species was undertaken and baseline data were collected on their ecological and socioeconomic importance. During 1989, 23 visits were made to nine sampling stations. Forty-seven species (2113 individuals) were collected with cast nets differing in mesh size; Prochilodus reticulatus (15.6%) Lasiancistrus and maracaiboensis (15.1%), Astyanax magdalenae (13.3%), Astyanax pasciatus viejita (11.9%), and Pimelodus coprophagus (5.7%) were the most abundant. Fifteen of the species are new records for this river system. Families with the most sepecies were the Loricariidae (13), Characidae (10), and the Pimelodidae (6). Nine the species were found only in the upper river basin. To date, 63 species (collected by us and by others) are present and represent 54% of the species recorded for the Lake Maracaibo basin. Polichancistrus sp. may be the only endemic. Species diversity was similar in the lower and middle river basins but higher than in the upper basin. Mature individuals were present in May, July, September and October, wich corresponds with the two rainy seasons. Prochilodus reticulatus is most valuable ichthyological resource in the Palmar

River due to its abundancy, wide distribution, and comercial importance.

Key words: Fish; Inventory; Venezuela; Zulia State; Perijã; Palmar River.

INTRODUCCION

La Cuenca del Río Palmar está situada en la parte nor-occidental del Estado Zulia, entre los Municipios Mara y Rosario de Perijá. Sobre este río se prevé la construcción del Embalse El Diluvio (Programa Desarrollo Integral de la Planicie de Maracaibo, Proyecto Palmar), a 50 km aproximadamente de su nacimiento, a 800 m aguas abajo de su confluencia con el Río Lajas y a 120 msnm (Fig. 1). Es una obra que se plantea básicamente para el riego de cultivos agrícolas; asimismo, se proyecta para el control de inundaciones, el desarrollo del turismo y recreación, y la generación de energía hidroeléctrica.

Una de las causas que modifica más a los ecosistemas fluviales es la construcción de represas, debido a que transforma el curso de agua, arriba y abajo sitio de presa y en el nuevo medio que se forma en área embalsada provocando: impedimento en la circulación de las poblaciones de peces que migran con fines de reproducción y/o alimentación; alteración del caudal, velocidad de las corrientes, composición físicoquímica del agua, nutrientes, productividad primaria, etc., efectos que acarrean consecuencialmente del ciclo de vida de los peces y cambios de habitat que podrían repercutir en una disminución o desaparición, temporal o permanente, de las pesquerías locales (subsistencia o comercial) y/o de aquellas especies acuáticas responsables del equilibrio ecológico del ecosistema fluvial (Boiry y Quiros 1985, Castello 1982, Lorencio y Novo 1981, Taphorn y Lilyestrom 1981).

Para precisar el impacto que pudiera ejercer la construcción del Embalse El Diluvio sobre la ictiofauna del Río Palmar, y proponer las medidas necesarias para minimizar los efectos negativos, se requiere del conocimiento previo tanto de las especies que componen este rengión faunístico como de su importancia ecológica,

taxonómica y humana (socio-económica), antes de cualquier intervención.

Hasta los momentos, de esta cuenca sólo se conocen los inventarios ictiológicos puntuales realizados por Schultz (1944a,b; 1949), Andrade (1984) y Taphorn y Lilyestrom (1984), los cuales se limitan a la identificación de algunas especies. Por lo tanto, el presente estudio tiene como objetivo:

Recabar datos ictiofaunísticos básicos del Río Palmar para definir la estructura y distribución de las poblaciones de peces; y datos físico-químicos, nutrientes y coliformes para caracterizar los habitats y la calidad del agua.

METODOLOGIA

DESCRIPCION DEL AREA DE ESTUDIO Y ESTACIONES DE MUESTREO

La Cuenca del Río Palmar se ubica, geográficamente, entre los 10° 07' y 10° 45' de latitud norte y los 71° 55' y 72° 45' de longitud oeste, abarcando una superficie de 2580 km². Este río desde su nacimiento en la Sierra de Perijá (2000 msnm) hasta su desembocadura en el Lago de Maracaibo, conjuntamente con el Río Lajas, su principal afluente, tiene una longitud aproximada de 210 km. Los dos ríos se encuentran mayormente en el Municipio Rosario de Perijá, del Estado Zulia (Fig. 1).

Aunque el Río Lajas está sujeto a la penetración humana (conucos y fincas), la mayor parte de su cuenca todavía queda virgen. Sin embargo, ocurre lo contrario en el Río Palmar, donde por acción de la actividad pecuaria ha sido mayormente intervenido, desde la desembocadura hasta el piedemonte; solamente su parte más alta, por encima del sitio de la futura presa, queda en condiciones casi naturales.

Se seleccionaron nueve estaciones de muestreo, las cuales se describen a continuación (Fig. 2):

Estación l.- Desembocadura del Río Palmar: Agua generalmente con muchos sedimentos, de color marrón y poca transparencia; taludes de barro, muy inclinados; fondo arenoso o una mezcla de arena y fango; cauce aproxima-

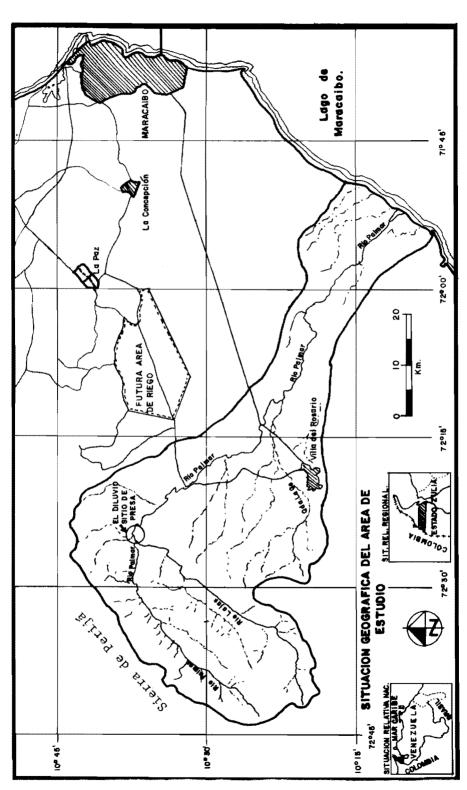
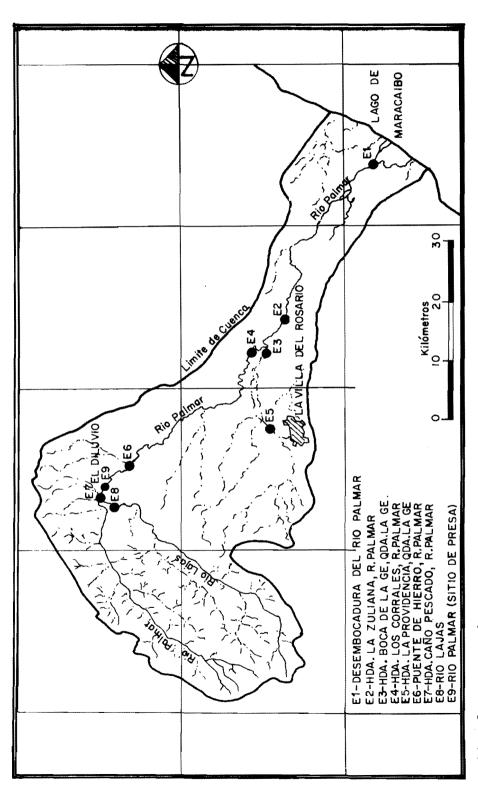



Fig. 1. Situación geográfica de la Cuenca del Río Palmar y sus afluentes.

Ubicación de las estaciones de muestreo dentro de la Guenca del Río Palmar. 2. Fig. ;

damente 25 m de ancho; hacia las orillas crecen gramineas, arbustos y árboles altos cuyas ramas y copas cubren parcialmente el río (bosque de galería); existe actividad pecuaria en las inmediaciones.

Estación 2.- Hacienda La Zuliana, Río Palmar: Agua con mucho sedimento, de color marrón y poca transparencia; fondo arenoso; ancho del cauce fluctuante, de unos 20 m; taludes de barro, inclinados; con árboles y vegetación herbácea (gramineas) y arbustos entremezclados con un área plana de arena hacia las orillas; la copa de los árboles altos no cubren mucho la orilla del río; existe intervención por actividad pecuaria.

Estación 3.- Hacienda Boca de La Gé, Quebrada La Gé (afluente Río Palmar): Cauce variable con ancho promedio de 7 m; fondo arenoso-fangoso; taludes con poco declive, mayormente con gramineas, y un sector con árboles en la misma orilla; la poca vegetación arbórea que existe no cubre la orilla del río; agua con mucho sedimento, de color marrón y escasa transparencia; la zona protectora del río está intervenida por la actividad pecuaria.

Estación 4.- Hacienda Los Corrales, Río Palmar: U-bicada dentro del bosque de galería, con árboles altos en ambas orillas, pero con poca cobertura de las mismas; agua con menos sedimento que en las anteriores, y mayor transparencia; taludes muy inclinados, de barro o de arena; fondo arenoso; ancho del río cerca de 20 m. Aunque la estación está situada dentro de una hacienda ganadera, en el sitio de muestreo no se apreció ninguna intervención antrópica.

Estación 5.- Hacienda La Providencia, Quebrada La Gé (afluente Río Palmar): Cauce aproximadamente 4 m de ancho, poco profundo, taludes de barro, muy inclinados, con abundante vegetación arbórea y alto porcentaje de cobertura sobre el caño; fondo fangoso y agua poco transparente. Está ubicada en el interior de una hacienda destinada a la actividad pecuaria.

Estación 6.- Puente de hierro, Río Palmar: Ubicada al lado del puente de hierro sobre el Río Palmar. Area muy abierta, con taludes poco inclinados y bajos, con predominancia de gramineas; fondo de arena, rocas y

piedras; cauce muy ancho, de unos 35 m; agua transparente hasta el fondo. Es un área muy intervenida con ausencia de bosque de galería.

Estación 7.- Hacienda Caño Pescado, Río Palmar (área de futura inundación): Cauce ancho, de aproximadamente 20 m. Es un área de explayamiento con tres tipos de habitats: fondo arenoso, de arena y piedras, y de arena y rocas, transparencia hasta el fondo del río; toda la orilla de la playa está cubierta por rocas; no hay vegetación cubriendo la orilla del cauce debido a la acción antrópica.

Estación 8.- Río Lajas (afluente del Río Palmar, área de futura inundación): Area de explayamiento con fondo de arena, de arena y rocas o de arena y piedras; cauce fluctuante, cerca de 20 m; poco profundo, transparente hasta el fondo. No hay vegetación en la orilla, excepto algunos islotes con presencia de gramineas. Baja intervención antrópica.

Estación 9.- Río Palmar (sitio de la futura presa): Cauce de aproximadamente 25 m de ancho, poco profundo; fondo arenoso con rocas grandes. Es un área de poco explayamiento y ya intervenida por la construcción de la carretera para llegar al sitio de la futura presa.

Estos sitios fueron escogidos a fin de comparar la ictiofauna de áreas morfológicamente diferentes a lo largo del Río Palmar, y la ictiofauna de este río con la de sus afluentes. Además, por lo accesible a ellos durante la época de lluvia.

MUESTREO DE PECES

A fin de inventariar la ictiofauna en la Cuenca del Río Palmar y afluentes, se hicieron 23 salidas de campo de un día cada una en las siguientes fechas del año 1989: 20 de enero; 13, 15, 21 y 29 de marzo; 03, 04, 11, 17, 24 y 25 de mayo; 06 de junio; 11, 21, 22 y 25 de julio; 13, 14, 22 y 29 de septiembre; y el 04, 05, 13 y 19 de octubre. Durante 1990, el 02 de febrero. Los días de visitas realizadas a cada estación se indican a continuación:

Número de Estación	Nombre	Fecha de Visita
1	Desembocadura del Río Palmar, zona baja.	13 marzo, 17 y 24 mayo, 21 julio, 13 septiembre, 04 octubre.
2	Hacienda La Zuliana, Río Palmar, zona me- día.	29 marzo, 03 mayo, 22 julio, 04 octubre.
3	Hacienda Boca La Gé, Quebrada La Gé, zona media.	04 y 25 mayo, 25 julio, 14 septiembre, 13 octubre.
4	Hacienda Los Corra- les, Río Palmar, zo- na media.	04 y 25 mayo.
5	Hacienda La Provi- dencia, Quebrada La Gé, zona media.	O3 mayo, 25 julio.
6	Puente de hierro, Río Palmar, zona alta.	11 mayo, 29 septiembre.
7	Hacienda Caño Pes- cado, Río Palmar (área de inundación), zona alta.	15 marzo, 11 mayo, 06 junio, 11 julio, 22 septiembre, 05 y 19 octubre, 02 febrero (1990).
8	Río Lajas, zona alta.	20 enero, 21 marzo.
9	Río Palmar (área de la futura presa), zona alta.	29 septiembre.

Para las capturas de los peces se emplearon atarrayas con aperturas de mallas de 0.6 cm, 5.1 cm y 6.4 cm y diametros de 5 a 6 m. El uso de chinchorros no fue muy efectivo debido a la presencia de rocas en el fondo (zona alta), corrientes fuertes y palos flotantes.

En cada estación los muestreos se realizaron durante el día, efectuando entre 40 y 50 lances (muestreos normales) entre 2 y 3 h, utilizando atarrayas de tamaños diferentes. Aparte de estos muestreos se hicieron otras colectas de peces aprovechando las salidas de campo destinadas a determinar la calidad del agua; estos muestreos consistieron en pocos lances, de cinco a diez (muestreos extraordinarios) y se realizaron en todas las es-

taciones, excepto en la 9. Los ejemplares capturados se preservaron en una solución de formalina al 10%.

En el laboratorio los peces fueron separados e identificados en su mayoría hasta el nivel de especie, mediante las claves de Taphorn y Lilyestrom (1984), Schultz (1944 a, b), Cervigón (1966), Mago (1978) y Fernández Yépez (1968).

Se determinó la longitud total (LT) y la longitud estandar (LS) en mm, el sexo, y el grado de madurez sexual. Para enumerar los individuos, se incluyeron todos los ejemplares capturados, excepto los de febrero 1990. En la medición y determinación del grado de madurez sexual se incluyó además, la muestra de peces de 1990. En muestras pequeñas se analizaron todos los individuos, en las grandes sólo el 30%.

El sexo fue determinado por observación de las gónadas, y en algunas especies a través del dimorfismo sexual. La escala de madurez sexual utilizada fue la siguiente:

Juvenil (J): Individuos de tallas pequeñas, con características externas de adulto, y gónadas no desarrolladas.

En Maduración (I): Individuos con gónadas en desarrollo, ocupando aproximadamente un 25% de la cavidad abdominal.

Maduro (M): Individuos con gónadas desarrolladas ocupando aproximadamente toda la cavidad abdominal.

En Recuperación (R): Individuos con gónadas vacías, flácidas.

Se calculó la abundancia relativa (%) para cada especie y se determinó la riqueza, la diversidad y la equidad en las comunidades de peces. La riqueza se determinó por el índice de Margalef y de Menhinick; la diversidad por el índice de Hill, Simpson y de Shannon; y la equidad por el índice de Pielou, Scheldon, Heip, Hill y Hill modificado (Ludwig y Reynolds 1988).

MUESTREO DE ICTIOPLANCTON

Conjuntamente con las colectas de peces, se tomaron muestras de ictioplancton utilizando dos redes: una red

pequeña tipo estandar No. 10, de 12.5 x 37.5 cm, y otra de 500 x de apertura de malla, de 30 x 70 cm. Estas fueron sumergidas por 15 min, dejándolas llevar por la corriente. En algunos casos, el tiempo de muestreo fue muy breve debido a la cantidad de sedimentos en suspensión, los cuales llenaron la red en 2 a 3 min. Las muestras fueron preservadas en formol al 5% y revisadas en el laboratorio con una lupa estereoscópica binocular, marca Nikon.

PARAMETROS FISICO-QUIMICOS, NUTRIENTES Y COLIFORMES

Los parametros físico-químicos determinados fueron pH, O₂ disuelto, temperatura del agua, transparencia y caudal. El pH fue precisado con un kit, marca HACH; el oxígeno disuelto y la temperatura del agua por un medidor, marca Yellow Springs Instrument Co., Modelo 51B; la transparencia del agua fue medida por un disco Secchi con un diametro de 19.5 cm. El caudal fue calculado de la manera siguiente:

C = 1/2 A x h x v, donde C = caudal, A = ancho del río (m), h = profundidad máxima del río (m) y v = velocidad de la corriente (m/seg). Esta última fue determinada calculando el tiempo que lleva un pequeño objeto flotante en recorrer una distancia de 10 m.

Para tener una idea sobre la calidad del agua se colectaron algunas muestras para la determinación de nutrientes (nitrógeno y fósforo) y coliformes en las fechas y estaciones siguientes:

Fecha	<u>Estaciones</u>
03 Mayo	2 (N), 5 (C)
04 Mayo	3 (C), 4 (NC)
ll Mayo	6 (N), 7 (N)
17 Mayo	1 (N)
04 Oct.	1 (NC), 2 (N)
05 Oct.	7 (NC)

N = Muestra de Nutrientes

C = Muestra de Coliformes

Estos sitios fueron escogidos para comparar la calidad del agua en diversos tramos del Río Palmar. Las muestras fueron analizadas por la Fundación Laboratorio de Servicios Técnicos Petroleros de la Universidad del Zulia.

RESULTADOS

ICTIOFAUNA

A los fines de conocer el comportamiento de la ictiofauna en el Río Palmar, se distinguieron tres zonas basadas en las cualidades físico-químicas del río: zona
baja, integrada por la estación l (caracterizada por
aguas profundas, poco transparentes y de corriente lenta);
zona media, formada por las estaciones del 2 al 5 (aguas
menos profundas, poco transparentes y corrientes más rápidas); y zona alta, comprendida por las estaciones del
6 al 9 (aguas poco profundas, transparentes y de corrientes aún más rápidas) (Tablas 9 y 10; y Fig. 2).

ESTRUCTURA Y DISTRIBUCION DE LAS ESPECIES

Durante el período de muestreo se colectaron un total de 47 especies ubicadas en 20 familias (Tabla 1), entre éstas, las más representativas fueron Characidae con diez especies, Loricariidae con 13 especies y Pimelodidae con seis especies.

Se capturaron un total de 2113 individuos (Tabla 2). Las cinco especies más abundantes fueron: bocachico (Prochilodus reticulatus), 15.6%; corroncho (Lasiancistrus maracaiboensis), 15.1%; sardina (Astyanax magdalenae), 13.3%; sardina (Astyanax fasciatus), 11.9%; y bagre mierdero (Pimelodus coprophagus), 5.7%. Estas en conjunto representaron el 61.6% de las capturas.

La tabla 3 indica la riqueza, diversidad y equidad en las zonas baja, media y alta del Río Palmar, representada por las estaciones 1, 3 y 7; las cuales presentaron el mayor número de muestreos (Tabla 4). La riqueza resultó más alta en la zona baja; la diversidad fue semejante en la zona baja y media pero mayor que en la zona alta; en tanto que, la equidad fue más alta en la zona media. En general, los índices de la zona media resultaron más semejantes a la zona baja que a la alta (Tabla 3). Se encontraron 31 especies en la zona media versus 30 en la baja y 28 en la alta (Tabla 2). En la zona baja, se ha-

TABLA 1. LISTA DE LAS ESPECIES ICTICAS COLECTADAS EN EL RIO PALMAR, LAJAS Y QUEBRADA LA GE.

		COLEC	CTADAS	POR	
	ESTE ESTUDIO	ANDRADE 1983-1984**	TAPHORN Y L. 1974-1975**	SCHULTZ 1942**	MBLUZ
AGENEIOSIDAE					
*Ageneiosus caucanus (doncella)	X				
ANOSTOMIDAE					
Schizodon corti (cotī)	X				
ARIIDAE					
*Selenaspis herzbergii (bagre)	Х				
AUCHENIPTERIDAE					
*Parauchenipterus insignis peloichthys (apretador)	X				
CALLICHTHYIDAE					
Hoplosternum thoracatum (curito)	X				
CHARACIDAE					
Astyanax fasciatus viejita (sardina)	X				
Astyanax magdalenae (sardina)	Х				
*Bryconamericus meridae (sardinita montañera)	X				
Cheirodon insignis (ganchosita)			X		
Creagrutops maracaiboensis (diente frío)			х		

TABLA 1. Cont.

Creagrutus beni (diente frio)					х
Creagrutus hildebrandi	X				
Cynopotamus venezuelae (jibao)	х				
*Roestes alatus maracaiboensis (jibao)	X				
Gephyrocharax venezuelae (brinconcita)		Х	х	х	x
Hemibrycon jabonero (jabonero)		х	х	X	
Hyphessobrycon sovichthys (petrotetra)	X				
Mylossoma acanthogaster (pampano)	x				
Phenagoniates macrolepis (azulito)		х	Х	X	
Roeboides dayi dientonito (dientoncito)	Х			-	
Saccoderma melanostigma (rabipintado)	х				
CHARACIDIIDAE					
Characidium voladorita (voladorita)		x	Х	х	
CICHLIDAE					
Aequidens pulcher (viejita)	х				
Caquetaia kraussii (mojarra amarilla)	X				
CTENOLUCIIDAE					
Ctenolucius hujeta hujeta (agujeta)	х				

TABLA 1. Cont.

CURIMATIDAE				
Curimata magdalenae (bocachica)	Х			
Potamorhina laticeps (manamana)	Х			
DORADIDAE				
Doraops zuloagai (mariana)				Х
*Rhinodoras thomersoni (matababa)	X			
ENGRAULIDAE				
*Anchovia clupeoides (camiguana)	X			
ERYTHRINIDAE				
Hoplias malabaricus (guabina)	X			
LEBIASINIDAE				
Piabucina erythrinoides (voladora)		Х		X
LORICARIIDAE				
Ancistrus sp. (corroncho)	X			
Chaetostoma anomala (corroncho)				Х
Cochliodon hondae (panaque)	X		¥ .	
*Crossoloricaria venezuelae (paleta)	Х			
Dasyloricaria filamentosa _(paleta)	X			
*Dolichancistrus sp.	х			,

TABLA 1. Cont.

*Farlowella curtirostra (aguja)	Х		
Hemiancistrus maracaiboensis (corroncho)		х	
Hypostomus watwata (armadillo pintado)	X		
Lasiancistrus maracaiboensis (corroncho)	х		
*Loricaria lagoichthys (= Spatuloricaria phelpsi) (paleta)	х		
*Rineloricaria magdalenae (paleta)	Х		
*Rineloricaria rupestris (paleta)	X		
Sturisoma festivum (paleta pintado)	X		
*Sturisoma kneri (paleta)	Х		
PARODONTIDAE			
Parodon suborbitale (tuso)	Х		
PIMELODIDAE			
Cetopsorhamdia picklei (bagrecito)		х	
Cheirocerus abuelo (bagre abuelo)		x	
Imparzinis nemacheir (bagrecito)		Х	X
Pimelodella chagresi (puyōn)	x		
Pímelodus sp. (bagre)	X		

TABLA 1. Cont.

Pimelodus coprophagus (bagre mierdero)	Х	**	er en		-
Pimelodus grosskopfii (bagre pintado)	х			*	1
Rhamdía quelen (bagre negro)	X .				
*Sorubim lima (bagre paletón)	X				
POECILIIDAE					
Poecilia caucana (piponcita)	Х				
POTAMOTRYGONIDAE					
Potamotrygon yepezi (raya de rio)	Х				
PROCHILODONTIDAE					
Prochilodus reticulatus (bocachico)	х			•	
STERNOPYGIDAE					
Sternopygus dariensis (pejeratōn)	X				
Sternopygus macrurus (cuchillo, machete)			Х		
TRICHOMYCTERIDAE					
Trichomycterus banneaui (babosa)		X .	X		X

Se incluyen especies no colectadas en este estudio.

^{* =} Señaladas por primera vez para el Río Palmar.

^{** =} Las fechas indican el año de colecta por los autores citados.

ABUNDANCIA RELATIVA DE PECES CAPTURADOS EN EL RIO PALMAR Y SU DISTRIBUCION SEGUN ESTACION Y (BAJA, MEDIA, ALTA). TABLA 2.

	MUM	NUMERO DE INDIVIDUOS DE CADA ESPECIE	INDIVI	J SONG:	DE CAD	A ESP	ECIE				
		Z	NUMERO DE ESTACION	DE EST	ACION					res	AVI.
ESPECIE	ZONA BAJA		ZONA MEDIA	EDIA			ZONA	ZONA ALTA		ATO	AGMI TAJ:
	1	7	m	4	5	9	7	89	9	T	јал ЗЯ
Ageneiosus caucanus	1									-	0.1
Schizodon conti	7	7								m	0.1
Selenaspis herzbengii	-										0.1
Parauchenipterus insignis	29		4							33	1.6
Hoplosternum thoracatum					4					4	0.2
Astyanax fasciatus		М	m			13	167	99	Н	251	11.9
Astyanax magdalenae	4	∞	М	7		27	73	162		282	13.3
Bryconamericus meridae								г		Н	0.1
Creagnutus hildebrandi	1	н					7			4	0.2
Cynopotamus venezuelae	4	П					1			9	0.3
Roestes alatus maracaiboensis	5		19							24	1.1
Hyphessobrycon sovichthys				. ,			7			7	0.3
Mylossoma acanthogaster	~										0.1

ABUNDANCIA AVITALIAR 1.0 0,3 9.0 1.4 4.5 0.4 9.0 0.4 1.7 0.2 1:1 1.8 2.1 TOTALES 38 12 30 95 45 ∞ 12 21 9 35 24 61 ð m ZONA ALTA ∞ 38 S $\boldsymbol{\sigma}$ ø NUMERO DE INDIVIDUOS DE CADA ESPECIE 13 14 Ŋ ന m 9 NUMERO DE ESTACION -4 LΩ ZONA MEDIA 4 74 ω 16 10 M 24 41 \sim N N Ŋ 10 m ø ZONA BAJA m 15 2 \simeq 9 21 Crossolonicaria venezuelae Ctenolucius hujeta hujeta Dasylonicaria bilamentosa Roeboides dayi dientonito Saccoderma melanostigma Rhinodoras thomersoni Potamorhina laticeps Curimata magdalenae Archovia clupeoides Hoplias malabaricus Caquetaia kraussii ESPECIE Aequidens pulcher Cochliodon hondae Ancistrus sp.

TABLA 2. Cont.

TABLA 2. Cont.

	IN	NUMERO DE INDIVIDUOS DE CADA ESPECIE	INDIV	IDNOS	DE C	ADA E	SPECIE				
			NUMERO DE	DE E	ESTACION	NO					AVI
ESPECIE	ZONA BAJA 1	2 2	ZONA MEDIA	DIA 4	5	. φ	ZONA 7	ZONA ALTA	6	IATOT AGNUAA	TAIIA §
Dolichancistus sp.							49		,	49	2.3
Farlowella curtirostra								Н		7	0.1
Hypostomus watwata	m	4		Н	0					17 (0.8
Lasiancistrus maracaiboensis.		7				11	126	174	6	322 1	15.1
Lonicania lagoichthys	П	9					4			11	0.5
Rineloricaria magdalenae		σ	13		16					38	1.8
Rinelonicaria nupestris							4	4		∞	0.4
Sturisoma festivum	2	40	н			н ′	4	4	Н	53	2.5
Sturisoma kneri	35		τ.	***						40	1.9
Parodon suborbitale						7	10	2		14	0.7
Pimelodella chagnesi	1								н	-	0.1
Pimelodus sp.				m			н			4	0.1
Pimelodus coprophagus	92	14	15							121	5.7

TABLA 2. Cont.

	N	NUMERO DE INDIVIDUOS DE CADA ESPECIE	E INDI	VIDUOS	DE C	ADA ES	PECIE				
			NUNER	O DE 1	NUNERO DE ESTACION	NO				ļ	AVI
ESPECIE	ZONA BAJA 1	7	ZONA MEDIA	EDIA 4	5	9	ZONA ALTA 7 8	ALTA 8	6	ATOT ADVIJAA	ABUNDA T A JIJA §
Pimelodus grosskopfii	14	14	7							35 1.	1.6
Rhamdia quelen	7	7	m	, r .	-					14 0.	0.7
Sorubim Lima	9		7			•				8	0.4
Poecilia caucana							20	m		23 1.	1.1
Potamotrygon yepezi						н		,		2 0.	0.1
Prochilodus reticulatus	80	49	9/	m	4	19	64	35	7	332 15.6	9
Sternopygus dariensis		г								1 0.	0.1
TOTAL INDIVIDUOS/ESTACION	376	189	286	17	40	85	576	527	17	2113 100.0%	Ů.
TOTAL ESPECIES/ESTACION	30	23	21	7	8	10	22	17	9	47	
No. MUESTRAS POR ESTACION	9	4	5	2	2	2	7	2	н	31	
TOTAL ESPECIES POR ZONA	30		31				2	28		47	

TABLA 3. RIQUEZA, DIVERSIDAD Y EQUIDAD EN LAS ESTACIONES 1, 3 y 7 DEL RIO PALMAR.

INDICES	ZONA BAJA ESTACION 1	ZONA MEDIA ESTACION 3	ZONA ALTA ESTACION 7
RIQUEZA	·	,	
мо	30	21	22
R1	4.9	3.54	. 3.30
R2	1.5	1.24	0.92
DIVERSIDAD			
ょ	0.13	0.12	0.17
H [‡]	2.54	2.49	2.12
N1	12.62	12.11	8.30
N2	7.85	8.49	5.91
EQUIDAD			
E1	.0.75	0.82	0.68
E2 .	0.42	0.58	0.38
E3	0.40	0.56	0.35
E4	0.62	0.70	0.71
E5	0.59	0.67	0.67

TABLA 4. NUMERO TOTAL DE ESPECIES Y DE INDIVIDUOS CAPTURADOS POR MUESTREO EN CADA ESTACION DEL RIO PALMAR.

NUMEKO ESTACION DE MUESTREO	FECHA VISITADA, 1989	MUESTREO DE PECES (NORMAL) No. ESPECIES IND.	PECES) No. IND.	MUESTREO DE PECES (EXTRAORDINARIO) NO. ESPECIES IND.	PECES NARIO) No. IND.	TOTALES No. ESPECIES IND	TOTALES No. ESPECIES INDIVIDUOS
	13 Marzo	9	16	,			
	17 Mayo 24 Mayo	16	109	9	13		
	21 Julio	18	152				
	13 Sept.	13	52				
	04 Octubre			ις	34		
	TOTALES	27	329	σ	47	30	376
2	29 Marzo	14	96				
	03 Mayo			15	40		
	22 Julio	σ	38				
	04 Oct.			7	15		
	TOTALES	19	134	16	55	23	189

•
ب
0
೮
-
4
-
-
3
B
-

MUESTREO DE PECES (NORMAL) NO. ESPECIES IND.
15 105
10
∞
10
21 215
6 14
Q

8 22
ω

TABLA 4. Cont.

NUMERO ESTACION DE MUESTREO	FECHA VISITADA, 1989	MUESTREO DE PECES (NORMAL) No. ESPECIES IND.	PECES L) No. IND.	MUESTREO DE PECES (EXTRAORDINARIO) No. No. ESPECIES IND.	E PECES NARIO) No. IND.	TOT No. ESPECIES	TOTALES No. RSPECIES INDIVIDUOS
9	11 Mayo			6	47		
	29 Sept.	σ	38				
	TOTALES	Ø.	38	D	47	10	85
7	15 Marzo	10	147				
	11 Mayo			11	99		
	06 Junio	თ	73				
	11 Julio	12	112				
	22 Sept.	11	74				
	05 Oct.			7	45		
	19 Oct.	œ	59				
	TOTALES	20	465	13	111	22	576

TOTALES No. ESPECIES INDIVIDUOS		527	17		2113
		17	9		47
MUESTREO DE PECES (EXTRAORDINARIO) No. ESPECIES IND.	128	128			
	16	16			
DE PECES MAL) No. IND.		399 399	17		
MUESTREO DE PECES (NORMAL) No. ESPECIES IND.		ET ET	φ φ	4	
FECHA VISITADA, 1989	20 Enero	21 Marzo TOTALES	29 Sept.		TOTALES
NUMERO ESTACION DE MUESTREO	8		σ		

3LA 4. Cont

llaron cinco especies que no estaban representadas en otros tramos (Ageneiosus caucanus. Selenaspis herzbergii, Mylossoma acanthogaster. Rhinodoras thomersoni y Anchovia clupeoides); en la zona media, cuatro especies (Hoplosternum thoracatum, Rineloricaria dalenae. Crossoloricaria venezuelae y Sternopyqus riensis); y en la zona alta, nueve especies (Bruconamericus meridae, Hyphessobrycon sovichthys, Rineloricaria rupestris, Ancistrus sp., Farlowella curtirostra, Volichancistrus sp., Parodon suborbitale, Pimelodella chaqresi y Poecilia caucana). En la zona baja predominaron el bocachico, el bagre mierdero y la (Sturisoma kneri); en la zona media se destacó igualmente el bocachico, la paleta pintada (Sturisoma festivum) y la manamana (Potamorhina laticeps); y en zona alta abundaron la sardina (A. fasciatus) y el corroncho (Lasiancistrus maracaiboensis). Sólo el 28% de las especies se encuentran repetidas en todas las zonas; entre éstas las más importantes por su abundancia son el bocachico y la sardina (A. magdalenae) (Tabla 2).

El promedio y rango de longitud estandar de las especies se señalan en la Tabla 5. En líneas generales se observa que las tallas más pequeñas tienden a concentrarse en la zona alta del río, en un rango promedio que osciló entre 65 y 116 mm de LS.

MADURACION SEXUAL

Las Tablas 6 y 7 señalan los estadíos de desarrollo gonadal de las especies ícticas donde fue posible distinguirlos, para los diferentes meses de muestreo y zonas del río, respectivamente.

En general, se puede apreciar que los juveniles predominaron en enero y marzo y los individuos maduros en los meses de mayo, julio, septiembre y octubre, lo cual se corresponde con las dos épocas de lluvia en la región (Tabla 6).

Se encontraron ejemplares maduros en el 78% de las 45 especies examinadas. En las zonas baja, media y alta del río el porcentaje de especies conseguidas en condición madura fue de 57%, 69% y 71%, respectivamente. De las 45 especies analizadas existen 20 (44%) que se encuentran maduras sexualmente en la zona alta; den-

PROMEDIO Y RANGO DE LONGITUD ESTANDAR DE LAS ESPECIES ICTICAS COLECTADAS EN EL RIO PALMAR, SEGUN ESTACIONES DE MUESTREO (MEDIDAS EN mm). TABLA 5.

ESPECIE				NUMERO DE	NUMERO DE LA ESTACION	ION	7	00	Q
	1	7	8	4	6				
Ageneiosus caucanus	190							. 4	
Schizodon conti	265	175 170-180							
Selenaspis herzbergii	260								
Parauchenipterus insignis	97 80-150		104 100-112						
Hoplosternum thoracatum				73 67-85					
Astyanax basciatus		70	79 75-83		ц	82 58-108	66 26-118	47 24-105	75
Astyanax magdalenae	70 58-78	74 62-95	09	68 60 - 75	Ln.	70 53 - 92	64 51-78	73 55-90	
Bryconamericus meridae								24	
Creagnutus hildebrandi	23	61					55 46-63		
Cynopotamus venezuelae	235 200 - 295	222					210		
Roestes alatus	116 95-127		108 84-135						

TABLA 5. Cont.

				NUMERO	DE LA F	NUMERO DE LA ESTACION			
ESPECIE	٦	2	3	4	5	9	7	8	9
Hyphessobrycon sovichthys							29		
Mylossoma acanthogaster	170								
Roeboides dayi	62 35 - 85	59 57 - 61	70 53 - 95				48 27-66	60 26-85	
Saccoderma melanostigma	28 2 4- 31							28 2 4- 36	
Aequidens pulcher	54 30-77					88 83 - 95	67 18-110	80 55-110	
Caquetaia braussií	135 115-155	100	140 125-162				100	155	
Ctenolucius hujeta	170 120 - 225	170 148-220	190 150 - 230				270		
Curímata magdalenae	120 85 - 155	108 83-138	135 77 - 178			92 77 - 98	111 84-135	79-69	
Potamorhina laticeps	205 177 - 220		192 135 - 230						
Rhinodonas thomensoni	82 68-94								

TABLA 5. Cont.

				NUMERO	NUMERO DE LA ESTACION	PACION			
ESPECIE	1	2	m	다"	5	9	7	80	6
Anchovía clupeoides	128								,
	102-165								
Hoplias malabaricus	303 260-345	160	209 195-223		203		109 87-120		
Ancistrus sp.								57	
Cochliodon hondae	101 75-143	195	129 115-150	180	124 106-135		160 51 155-165 39-63	51 39-63	163 150-175
Crossoloricaria venezuelae		143 139-147	143 113 139-147 110-115						
Dasylonicania filamentosa	207 195-220	219 145-280	239 175-275		300	157 105-212	210		
Dolichancistrus sp.							81 33-140		
Farlowella curtirostra								88	
Hypostomus watwata	135 110-165	149 105-220		105	162 13 4- 210		;		

Cont.
5
TABLA

ESPECIE				NUMERO	NUMERO DE LA ESTACION	STACION		a	σ
	-	7	۳	4	٩	٥	,	0	,
Lasiancistrus maracaiboensis		134 105-163				70 55-87	73 30-13 <i>5</i>	76 45- 120	76 50 - 136
Lonicaria lagoichthys	370	180 109-310					230 105-29 O		
Rineloricaria magdalenae		100 93-110	107 96-131		103 87-128				
Rineloricaria rupestris							93 90-10 O	67 46-80	
Sturisoma festivum	160 100~165	152 98-175	163			127	142 123-155	88 55-120	170
Sturisoma kneri	228 190-290		269 230-280						
Parodon suborbitale						83 73-92	92 75-121	70 42-98	
Pimelodella chagnesi									93
Pimelodus sp.			; * ;	135 132-138			240		
		•							

ABLA 5. Cont.

ESPECIE			Z	UMERO DE	NUMERO DE LA ESTACION	CION			
- 1	1	2	3	4	5	9	7	89	0
Pimelodus coprophagus	138 100 - 180	138 134 100-180 101-190	144 130-155						
Pimelodus grosskophii	158 112-190	123 95-170	128 100-173						
Rhamdia quelen	210 185-235	210 160 185-235 145-190	163 130 - 190	170	225				
Sorubím Líma	288 250-310		198 195 - 200						
Poecilia caucana			24				26 19 - 29	25 2 4- 26	* Man
Potamotrygon yepezi		\$		185		241	 -		
Prochilodus neticulatus	190 130-235	179 92-215	203 95-246	203 230 95-246 215-255	144	146 90-200	146 125 90-200 105-152	118 95-145	201 190-211
Sternopygus dariensis		480	M						
many day are: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					:•		•		

TABLA 6. MADURACION SEXUAL DE VARIAS ESPECIES DEL RIO PALMAR, SEGUN MESES MUESTREADOS EN 1989.

ESPECIE	ENERO	MARZO	MAYO	OINIC	JULIO	SEPT.	OCTUBRE
Ageneiosus caucanus			D.				
Schizodon conti		I			M		
Selenaspis herzbergii					I		
Parauchenipterus insignis			æ			н	Ħ
Hoplosternum thoracatum			н		н		
Astyanax fasciatus		ט	E	E	E	E	
Astyanax magdalenae			JIMR	×	Σ	Œ	
Bryconamericus meridae	ט						
Creagnutus hildebrandi			ט	E			
Cynopotamus venezuelae		Æ	Σ		×		
Roestes alatus			E			Σ	Σ.
Hyphessobnycon sovichthys		ט					
Mylossoma acanthogaster					н		
Roeboides dayi			IM		M	MI	Σ
Saccoderma melanostigma	כי	ņ					
Aequidens pulcher	н	н	JI		Ιſ	Ħ	Н
					!		

ABLA 6. Cont.

ESPECIE	ENERO	MARZO	MAYO	JUNIO	JULIO	SEPT.	OCTUBRE
Caquetaia kraussii		If	I		E	ŋ	
Ctenolucius hujeta		×	E				Σ
Curimata magdalenae	כי	JI	E D		×	JIM	
Potamorhina laticeps			Ν		MI	Σ	¥
Rhinodoras thomersoni						H	MI
Anchovia clupeoides					н		
Hoplias malabaricus		מ	Σ Σ		MI		П
Ancistrus sp.		M					
Cochliodon hondae	כי	н	JI		JIM	Н	ט
Chossolonicaria venezuelae			×				
Dasyloricaria filamentosa			E		×	JI	Σ
polichancistrus sp.						ט	JIM
Farlowella curtirostra		E					
Hypostomus watwata			J M		JI	ט	н
Lasiancistrus maracaiboensis			IMR	н	IMR	IMR	IMR

ABLA 6. Cont.

ESPECIE	ENERO	MARZO	MAYO	OINDC	OITO	SEPT.	OCTUBRE
Loricaria lagoichthys		JI	W				Ж
Rinelonicaria magdalenae			Σ		æ		MI
Rinelonicaria nupestris		н		Σ			Σ
Sturisoma festivum	ŋ		MI	H	IMR	×	Σ
Sturisoma kneri			Σ		Σ		ĸ
Parodon suborbitale	כי					×	MR
Pimelodella chagnesi						Σ	
Pimelodus sp.			J M				
Pimelodus coprophagus			IJ		JI	Ι'n	J
Pimelodus grosskopfii					UIW		MI
Rhamdia quelen			I		Æ	æ	
Sorubim lima			ט		ט	IM	
Poecilia caucana		Æ					
Prochilodus neticulatus		Н	JIM	Н	IMR	MR	IMR
J = Juvenil; I = En m	En maduración;		M = Maduro;	duro;		R = En rec	= En recuperación

TABLA 7. MADURACION SEXUAL DE VARIAS ESPECIES DEL RIO PALMAR SEGUN ZONA (BAJA, MEDIA Y ALTA).

					ZONA				
ESPECIE	ם	BAJA I M	ĸ	ŋ	MEDIA I M	K	D	ALTA I M	rx.
Ageneiosus caucanus	×								
Schizodon conti		×			×				
Selenaspis herzbengii		×				,			
Parauchenipterus insignis		×			×				
Hoplosternum thoracatum					×				
Astyanax basciatus					×		×	×	
Astyanax magdalenae		×		×	×			×	×
Bryconamericus meridae							×		
Creagnutus hildebrandi	×				×	_		~	×
Cynopotamus venezuelae		×			×			~	×
Roestes alatus		×			×				
Hyphessobrycon sovichthys							×		
Mylossoma acanthogaster		×							
Koeboides dayi		X			×			,	×
Saccoderma melanostigma	×						×		
Aequidens pulcher	×	×					×	×	×

'ABLA 7. Cont.

						ZONA	I.A					
ESPECIE	ŗ	BA	BAJA M	24	ה	MEDIA)IA M	ĸ	ņ	ALTA I	A M	24
Caquetaia krausii	X	×			×	×	X			×		
Ctenolucius hujeta			×			×	×				×	
Curimata magdalenae		×	×		×	×	×		×	×	×	
Potamorhina laticeps	×	×	×		×	×	×		×		×	
Rhinodonas thomersoni		×	×									
Anchovía clupeoídes		×										
Hoplias malabaricus			×		×	×	×		×			
Ancistus sp.											×	
Cochliodon hondae	×	×			×	×	×		×	×		
Crossoloricaria venezuelae				•			×					
Dasyloricaria filamentosa		×	×				×		×	×	×	
Volichancistrus sp.									×	×	×	
Farlowella curtirostra											×	
Hypostomus watwata	×				×	×	×					
Lasiancistrus maracaiboensis						×			×	×	×	×
				4			100000000000000000000000000000000000000					

ئد	
o	
රි	
~	
Ϋ́	
TABLA	

						ZONA						
ESPECIE	ט	BAJA	A. M	K	ה	MEDIA I	A	R	ŋ	ALTA	A M	EX
Lonicaria Ragoichthys			×		×	×					×	×
Rineloricaria magdalenae					×	×	×					
Rineloricaria rupestris										×	×	
Sturisoma festivum	×		×				×	×	×	×	×	
Sturisoma kneri	-	×	×				×	×				
Parodon suborbitale				-					×		×	×
Pimelodella chagnesi											×	
Pimelodus sp.					×				×			
Pimelodus coprophagus	×	×			×	×						
Pimelodus grosskopfii	×	×			×	×						
khamdia quelen			×			×	×					
Sorubim Rima	×		×	· · · · · · · · · · · · · · · · · · ·	×							
Poecilia caucana											×	
Prochilodus neticulatus	×	×	×	×	×	×	×	×	×	×	×	
J = Juvenil I = En ma	= En maduración;) ;t			M = Ma	= Maduro;			EK.	En recuperación	uperac	ión

TABLA 8. RANGO DE TALLAS DE EJEMPLARES SEXUALMENTE MADUROS, CAPTURADOS EN EL RIO PALMAR.

ESPECIE		TALLAS - MADUREZ SEXUA			
ESPECIE	SEXO	LS(mm)	LT (mm)		
Parauchenipterus insignis	M	130	160		
	H	150	192		
Astyanax basciatus	M	65 - 118	83 - 149		
	H	53 - 115	69 - 145		
Astyanax magdalenae	M	53- 68	70- 92		
	H	53- 95	67-120		
Creagrutus hildebrandi	Н	63	78		
Cynopotamus venezuelae	M	200-245	240-295		
	H	240-295	290-345		
Roestes alatus	M	84-105	102-125		
	H	95-135	120-165		
Roeboides dayi	M	58 - 85	73-107		
	H	53 - 83	68-104		
Caquetaia kraussii	Н	162	206		
Ctenolucius hujeta	M	140-270	170-315		
	H	120-225	140-265		
Curimata magdalenae	<u>М</u>	120 - 167	152-205		
	Н	111 - 178	147-207		
Potamorhina laticeps	M	195 - 220	250 - 272		
	H	203 - 221	242 - 259		
Hoplias malabaricus	M	250 - 345	300-405		
	H	185 - 323	225-384		
Ancistrus sp.	M	56 - 70	7 4- 90		
	H	49- 58	65 - 75		
Dasyloricaria filamentosa	M	270	310		
	H	175 - 305	215 - 355		
Dolichancistrus sp.	Н	78-105	100-135		
Farlowella curtirostra	Н	75	88		
Hypostomus watwata	Н	180	245		
Lasiancistrus maracaiboensi	5 м	75 ~ 135	100 - 180		
	Н	55 ~ 115	75-150		

TABLA 8. Cont.

DODECTE		TALLAS - MA	DUREZ SEXUAL
ESPECIE	SEXO	LS(mm)	LT (mm)
Loricaria lagoichthys	Н	250	305
Rineloricaria magdalenae	M	87-131	102 - 152
	H	91-112	106 - 138
Rineloricaria rupestris	Н	75-100	88-118
Sturisoma festivum	M	155-174	185 - 208
	H	127-175	150 - 205
Sturisoma kneri	м	190 - 290	229 - 340
	Н	243	285
Parodon suborbitale	Н	75-121	90-151
Rhamdia quelen	м	235	285
	Н	185 ~ 225	235 - 270
Sorubim lima	Н	310	343
Poecilia caucana	м	19- 32	25- 42
	Н	24- 29	30- 32
Prochilodus reticulatus	M	140-244	170-297
	H	160-235	200-296

tro de éstas se hallan siete de las nueve especies exclusivas de la zona alta y 85% de las 13 especies que son frecuentes en toda la Cuenca del Río Palmar (éstas también se consiguieron maduras hacia la zona media).

La Tabla 8 presenta los rangos de talla de los individuos sexualmente maduros. Se observa que en el bocachico la talla mínima de madurez sexual fue de 200 mm y la máxima de 296 mm de LT para las hembras y de 170 y 279 mm, respectivamente, para los machos.

ICTIOPLANCTON

Durante el período de muestreo solamente se colectó una larva de Ctenolucidae en la estación l, en el mes de septiembre.

PARAMETROS FISICO-QUIMICOS, NUTRIENTES Y COLIFORMES

La Tabla 9 muestra los parámetros físico-químicos de cada estación de muestreo y la Tabla 10 el promedio rango de éstos para las zonas baja, media y alta río. En general las aguas del Río Palmar tienen largo de su curso un pH básico ($\bar{x} = 9.2$) y concentratraciones altas de oxígeno disuelto (alrededor de mg/lt) que reflejan una significativa capacidad autopurificación. En la alta se da la mayor velocidad de corriente ($\bar{x} = 0.81 \text{ m/seg}$) y la mayor transparencia. El agua, generalmente era clara hasta el fondo, alcanzando en algunos casos el equivalente a la profundidad cauce (0.8 m); también en ciertos pozos ubicados arriba de la estación 7, la transparencia alcanzó la profundidad de los mismos (1.2 m). En la zona igualmente se obtuvo la temperatura más baja del $(\bar{x} = 25.2 \text{ °C})$ y el mayor caudal $(\bar{x} = 5.1 \text{ m}^3/\text{seg})$. respecto a éste, resulta una notable diferencia en lación a los valores registrados para la zona media y baja. En cuanto a la profundidad del cauce, se encontró que la mayor profundidad está en la zona baja, donde alcanzó un promedio de 2.5 m.

La Tabla ll indica los resultados de los análisis de nitrógeno total, fósforo total (medido como fosfato), coliformes totales y fecales, en las estaciones del lal 7. Según los resultados obtenidos, existen aportes de nutrientes desde aguas arriba de la zona alta del río que tienden a incrementarse hacia la zona baja.

PARAMETROS FISICO-QUIMICOS DE LAS ESTACIONES DE MUESTREO LOCALIZADAS EN EL RIO PALMAR, SEGUN ZONAS BAJA, MEDIA Y ALTA. TABLA 9.

CAUDAL m ³ /seg	2.8 1.6 4.1	4.4 3.1	0.2	8*9	0.1	1	5.0	3.6 6.6	ı	5.3
PROFUNDIDAD m	2.25 2.5 2.7	0.7	0.6	1.20	0.40	, i	0.50	0.70	ı	0.30
ANCHO	25 25 25 25	25 18.5	7:0	20.0	4.75		20	20 50	1	25
VELOC. CORRIENTE m/seg	0.10 0.05 0.12	0.50	0.11 0.05 0.16 0.09	0.57	0.08		1.00	0.52 0.33	ı	1.42
TKANSPA- RENCIA	20 15 20 10	33	15 20 18 15	40	15	0 1	50	70 80	,	30
TEMPERA- TURA	26 31 26	28 29	27 29 27 27	28	26	C•C7	26	25.5 25.5	25.5	23.5
02 DISUELTO mg/lt	7.8 7.7 6.3 7.6	7.4	3.0 6.1 6.8	7.4	5.2	8.2	7.7	7.9	8.0	7.6
pH	6.0 0.0 0.0	9.5	0.00.00	9.5	8.5	9.5	9.5	ທຸດ ທຸດ	9.5	9.5
FECHA DE VISITA, 1989	13 MARZO 24 MAYO 21 JULIO 13 SEPT.	29 MARZO 22 JULIO	25 MAYO 25 JULIO 14 SEPT. 13 OCT.		25 JULIO	15 MARZO	06 JUNIO 11 JULIO	22 SEPT. 19 OCT.	21 MARZO	29 SEPT.
N ² ESTACION DE MUESTREO	1 ZONA BAJA	2	3 ZONA MEDIA	4	5	0 /	ZONA	ALTA	∞	6

TABLA 10. PROMEDIO Y RANGO DE PARAMETROS FISICO-QUIMICOS DETERMINADOS EN LAS ZONAS BAJA, MEDIA Y ALTA, DEL RIO PALMAR.

T				+
CAUDAL m3/seg	2.8 1.6-4.1	2.6 0.1-6.8	5.1 3.6-6.6	3,5
PROFUNDIDAD M	2.5	9 0.4-1.3	0.6	1.3
ANCHO	25 25	13.1 4.8-25	28.8 20-50	22.3
VELOC. CORRIENTE m/seg	0.09	0.23 0.05-0.57	0.81 0.33-1.42	0.38
TRANSPA~ RENCIA	16.3 10-20	21.4 15-40	60 30 - 80	32.6
TEMPERATURA °C	27.7 26-31	27.6 26-29	25.2 23.5-26.0	26.8
O ₂ DISUELTO mg/lt	7.4 6.3-7.8	6.1	7.8 7.6-8.0	7.1
Нď	9.1 9.0-9.5	9.0 8.5-9.5	9.5 0	9.2
ZONA	BAJA	MEDIA	ALTA	ıı x

CONTENIDO DE NUTRIENTES (NITROGENO Y FOSFORO TOTAL) Y COLIFORNES (TOTALES Y FECALES) EN LAS ZONAS BAJA, MEDIA Y ALTA DEL RIO PALMAR. TABLA 11.

TROGENO FOSFORO TOTAL COLIFORMES COLIFORMES FOTAL Como Fosfato) TOTALES FECALES ng/lt) (mg/lt) (Bact/100 ml) (Bact/100 ml)	5.4 4.4	14.0 6.4 4	3.4	8 8 8 8 7 8	- 918 278	6.4 1.4 345 278	- 240 130	2 c a c	o ∞ n m	
NITROGENO TOTAL (mg/lt)	5.4	14.0	3.4	12.3	ı	6.4	•	α ν	o • •	V C
FECHA 1989	17 MAYO	04 OCT.	O3 MAYO	04 OCT.	04 MAYO	04 MAYO	O3 MAYO	11 MAYO	11 MAYO	05 OCT.
No. ESTACION	u ALA8	ANOS	2	AIG	WEI ~	4 Anos	ζ.	A	rja /	/NO2

Los muestreos de coliformes, aunque fueron de carácter puntual, indican la presencia de coliformes fecales hacia la zona alta y media del río y de coliformes totales hacia la zona media. Los coliformes fecales en las estaciones 3, 4 y 7 se encontraron en concentraciones por encima a lo establecido por el Reglamento Parcial No. 4, sobre la clasificación de las aguas, de la Ley Orgánica del Ambiente, para aguas destinadas a pesca deportiva y comercial (Sub-tipo 4A); y los coliformes totales en la estación 3 se encontraron cercanos al límite máximo. El Reglamento señala como límite, concentraciones menores de 200 bacterias coliformes fecales y 1000 bacterias coliformes totales por cada 100 ml (MARNR 1985).

DISCUSION

Según Taphorn y Lilyestrom (1984), existen 1aCuenca del Lago de Maracaibo unas 117 especies de ces de agua dulce. El inventario realizado en este estudio en el Río Palmar y afluentes principales (Río Lajas y Quebrada la Gé) ha asomado la presencia de 47 especies, 15 de las cuales, son reportadas por vez para este río (Tabla 1). En adición, Andrade (1984), Taphorn y Lilyestrom (1984, Comunicación personal). Schultz (1944b, 1949) y personal del Museo de Biología, Facultad Experimental de Ciencias, Universidad del Zulia (MBLUZ) (Comunicación personal), colectaron 16 especies en el Río Palmar no observadas en el presente inventario. Así, hay un total de 63 especies conocidas para el Río Palmar y sus dos afluentes principales que representan el 54% de las especies registradas para la Cuenca del Lago de Maracaibo (Tabla 1).

En general, la ictiofauna de la Cuenca del Lago de Maracaibo es muy semejante a la ictiofauna de la Cuenca del Río Magdalena, de Colombia; ambas cuencas tienen especies exclusivas como son: Astyanax magdalenae, Cynopotamus (Cyrtocharax) atratoensis venezuelae, Curimatus magdalenae, Dasyloricaria filamentosa, Rineloricaria magdalenae, Pimelodella chagresi y Prochilodus reticulatus (Andrade 1984). Todas estas especies están representadas en el Río Palmar. Ocho genera aparentan ser endémicas de la Cuenca del Lago de Maracaibo:

Sovichthys, Voraops, Creagrutops, Hubbsichthys, Perrunichthys, Hoplomyzon, Triden-imilis y Saccoderma (Andrade 1984); de éstos solamente Doraops, Creagrutops y Saccoderma se encuentran en el Río Palmar.

La mayoría de las especies del Río Palmar se hallan también en los otros ríos de la Cuenca del Lago de Maracaibo (ver Tabla 1 de Andrade 1984). Sin embargo, Do-Lichancistrus sp., colectada en este estudio (la cual no es D. cobrensis, pero posiblemente constituya una nueva especie), no ha sido señalada previamente en la Cuenca del Lago de Maracaibo, excepto quizás, para el Río Limón (Taphorn y Lilyestrom 1984) y Caño Colorado (afluente del Río Palmar) (personal del MBLUZ, Comun. personal).

Hasta el momento, en la Cuenca del Lago de Maracaibo se han realizado pocos estudios que se relacionen la estructura y distribución de la comunidad de peces existentes en los diferentes ríos. Se tienen cias sólo de los trabajos efectuados para los Ríos chango (Moscó 1988) y Tamare (González 1985) en la costa oriental del Lago; el Río Chama (Nebiolo 1982) en la costa sur y Caño El Sargento (Soler 1988), afluente del Río Limón, hacia la costa occidental del Lago. rando la ictiofauna del Palmar con la reportada hasta los momentos para estos ríos, encontramos que en el Palmar se ha registrado una riqueza total de 63 especies versus 40, 32, 14 y 22 especies respectivamente, los ríos mencionados. Por otra parte, el Río Palmar contiene una buena riqueza de corronchos (Loricariidae) y de bagres (Pimelodidae), quince y nueve especies respectivamente, muchas de las cuales están ausentes presentadas en los Ríos de Machango y Tamare.

Las características físico-químicas del Río Palmar mostraron que existen diferencias entre las tres zonas identificadas a lo largo del cauce, principalmente las de la zona alta, con respecto a las zonas media y baja, las cuales resultaron más similares entre sí. Tal cuestión se corresponde al hecho de que las zonas media y baja, altitudinalmente, están situadas hacia la planicie y la zona alta hacia el piedemonte de la Sierra de Perijá, a más de 100 msnm.

En relación al caudal, se manifiesta en términos pro-

medios una notable diferencia entre la zona alta y las zonas media y baja del río, las cuales tienen valores de 5.1, 2.6 y 2.8 m³/seg, respectivamente, esta disminución en el gasto se debe probablemente a las numerosas tomas o estaciones de bombeo de las haciendas agropecuarias, ubicadas hacia las márgenes de este río. Tal resultado se corresponde a lo encontrado por Parra (1979) quien reporta para la parte media del Río Palmar un gasto promedio de 3m³/seg.

La concentración de coliformes fecales y totales registradas para la zona media y alta del río, refleja la influencia de las actividades antrópicas (excretas humanas) y pecuarias (estiercol de ganado) localizadas en las inmediaciones del cauce.

Según los resultados obtenidos, existen aportes de nitrógeno y fósforo, desde aguas arriba de la zona alta del río, que tienden a incrementarse ligeramente hacia la zona baja. Quizás, este aumento también refleja la influencia de las actividades antrópicas, pero considerando que las muestras fueron puntuales, no se puede precisar el nivel de significancia de estos valores.

Entre las especies que tienen un conocido valor comercial en las pesquerías de la región zuliana se encuentran el bocachico, manamana, armadillo pintado, bagre paletón, doncella y la mojarra amarilla. Todas se encuentran en el Río Palmar. Las comunidades con amplia tradición pesquera como las del Congo Mirador, Sta. Bárbara del Zulia, Concha, etc., devengan su sustento casi en un cien por ciento de la pesca de manamana y bocachico. Ríos como el Catatumbo, Santa Ana y el Escalante, aportan poco más del 80% de la producción pesquera de la Cuenca del Lago, representada en su casi totalidad por estas dos especies (Ferrer 1986).

El Río Palmar también contiene varias especies ornamentales representadas por las sardinas, el gupy, los corronchos y la viejita, entre otros, pero éstas nunca han sido explotadas.

Debido a su abundancia e importancia comercial, el bocachico es el recurso más importante en el Río Palmar, el cual se puede pescar todo el año a lo largo del río. La mayoría de las pesquerías son de manera artesanal, fundamentalmente para el auto-consumo de las haciendas y de los indígenas, excepto hacia la desembocadura, donde se efectúan con fines comerciales.

Los indígenas, además de usar redes y anzuelos, utilizan, a manera de ictiotóxico y durante la sequía, un bejuco llamado "Charo" (Lira 1989).

Supuestamente, el bocachico es migratorio (Ferrer 1986); y es de interés señalar, que no encontramos ejemplares menores de 90 mm, aunque hubo juveniles de otras especies hasta de 12 mm. Las migraciones, sin embargo, evidentemente no son muy puntuales, porque observamos ejemplares maduros en varios meses del año y en las tres zonas del río. El hecho que el bocachico desove en la parte media, significa que los adultos no necesitan subir hasta la parte alta para cumplir su ciclo de vida, pero posiblemente lo hagan con fines de alimentación.

AGRADECIMIENTO

Agradecemos a las siguientes personas su participación en la realización del presente trabajo:

Donald Taphorn, asesor del Proyecto; Wilmer Villalobos, técnico de campo; Alfredo Soler y José Moscó, por su información no publicada sobre especímenes colectados en el Río Palmar; José Lira por su participación en algunos trabajos de campo, y a Lourdes Rodríguez Escalona por el mecanografiado de este trabajo.

Este proyecto fue financiado por la Corporación para el Desarrollo de la Región Zuliana (CORPOZULIA).

BIBLIOGRAFIA

- Andrade Morán, G. J. 1984. Un primer aporte al estudio del efecto humano sobre la fauna de peces de la Cuenca del Lago de Maracaibo. Tesis de Grado, Dept. Biol., Facultad Exp. Ciencias, Univ. Zulia, 42 pp.
- Boiry, L. y R. Quirós. 1985. Medidas tendentes a la protección de la ictiofauna del Río Uruguay de los efectos de la construcción de la Represa de Garabí -HI-DRENED HIDROSERVICE, Agua y Energía Eléctrica ELECTROBRASS, Sao Paulo, Brasil. Buenos Aires, Argentina, 91 pp.

- Castello, H. P. 1982. Biología y migraciones de la fauna de peces del Río Alto Paraná. Informe Técnico, Consorcio Lahmeyer -Harza y Asociados, Buenos Aires, Argentina, 67 pp.
- Cervigón M., F. 1966. Los peces marinos de Venezuela, Vol. 1. Estación de Invest. Marinas Margarita, Fundación La Salle de Ciencias Nat., 436 pp.
- Fernández Yépez, A. 1968. Contribución al conocimiento de la familia Doradidae en Venezuela. Bol. Inst. Oceanog., Univ. Oriente 7(1): 7-72.
- Ferrer M., O. J. 1986. Manamana y bocachico, pescados populares. FONAIAP Divulga 4(21): 16-17.
- Galué, P. y H. Díaz (Coordinadores). 1989. Evaluación preliminar de impacto ambiental sistema de riego Río Palmar. Informe del Proyecto Palmar, Programa de Desarrollo Integral de la Planicie de Maracaibo. MARNR-CORPOZULIA-LUZ-MAC. 131 pp. + anexos.
- González Hernández, L. S. 1985. Inventario y distribución de los peces en el Río Tamare. Estado Zulia, Venezuela. Trabajo Especial de Grado, Facultad Exp. Ciencias, Dept. Biología, Univ. Zulia, 58 pp.
- Lira, J. R. 1989. Alteración de la comunidad indígena. Pp. 60-69, en Evaluación preliminar de impacto ambiental sistema de riego Río Palmar, Proyecto Palmar, MARNR-CORPOZULIA-LUZ-MAC, Maracaibo. 131 pp. + anexos.
- Lorencio, C. G., y F. G. Novo. 1981. Cambios ictiológicos durante las primeras etapas de la sucesión en el Embalse de Arrocampo (Cuenca de Tajo. Cáceres). Bol. Inst. Espa. Océano 6(319): 224-248.
- Ludwig, J. A. y J. F. Reynolds. 1988. Statistical ecology. John Wiley & Sons, New York, pp. 85-103.
- Mago, F. 1978. Los peces de agua dulce de Venezuela. Cuadernos Lagoven, PDVSA, 35 pp.
- MARNR. 1985. Reglamento de clasificación de las aguas y medidas de control de polución de la Cuenca del Lago de Maracaibo. Sección segunda, artículo 4. Gaceta oficial República de Venezuela, 28 de mayo de 1985, pp. 252-750.

- Moscó Morales, J. 1988. La comunidad de peces del Río Machango, Cuenca del Lago de Maracaibo, Venezuela. Estructura de especies y su distribución. Trabajo de Ascenso, Dept. Biol., Facultad Exp. Ciencias, Univ. Zulia, 39 pp.
- Nebiolo G., E. 1982. Composición y estructura de la ictiofauna de las cuencas media y alta del Río Chama, Mérida. Tesis de Grado, Dept. Biol., Facultad Ciencias, Univ. de Los Andes, 151 pp.
- Parra P., G. (Coordinador) 1979. Estudio integral sobre la contaminación del Lago de Maracaibo y sus afluentes. Parte 2: Evaluación del proceso de eutroficación. MARNR-DGIIA-(DISCA), 235 pp.
- Schultz, L. 1944a. The catfishes of Venezuela, with descriptions of thirty eight new forms. Proc. U.S. Natl. Mus. 94: 173-338.
- . 1944b. The fishes of the family Characinidae from Venezuela with descriptions of seventeen new forms. Proc. U.S. Natl. Mus. 95: 237-367.
- . 1949. A further contribution to the ichthyology of Venezuela. Proc. U.S. Natl. Mus. 99: 1-211.
- Soler B., A. 1988. Contribución al estudio de la estructura de la comunidad de peces del Caño El Sargento, Carrasquero, Estado Zulia. Trabajo Especial de Grado, Dept. Biol., Facultad Exp. Ciencias, Univ. Zulia, 50 pp.
- Taphorn, D. C. y C. G. Lilyestrom. 1981. Los peces de importancia económica del área Guanare Masparro. Informe preliminar. Proyecto: Estudio de Manejo Ambiental de la Región Guanare Masporro. Cent. Interam. Des. Int. de Aguas y Tierras. OEA, MARNR, UNELLEZ, Univ. Los Andes, Mérida, Venez., 23 pp.
- Taphorn, D. C. y C. Lilyestrom. 1984. Claves para los peces de agua dulce de Venezuela: l. Las familias de Venezuela, 2. Los géneros y las especies de la Cuenca del Lago de Maracaibo. Revista UNELLEZ Cienc. Tecnol. 2(2): 5-30.