© The Authors, 2022, Published by the Universidad del Zulia
*Corresponding author: gconstante@espam.edu.ec
Gonzalo Bolívar Constante Tubay
1*
Ernesto Gonzalo Cañarte Bermudez
2
Luis Alberto Duicela Guambi
1
José Bernardo Navarrete Cedeño
2
Rev. Fac. Agron. (LUZ). 2022, 39(4): e223950
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n4.05
Crop Production
Associate editor: Dra. Lilia Urdaneta
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
Keywords:
Insect pest
Solanaceae
Infestation
Severity
Cultural practices
Interaction between the incidence of Prodiplosis longila Gagné (Diptera: Cecidomyiidae) and
management practices in tomato crops in Manabí, Ecuador
Interacción entre la incidencia de Prodiplosis longila Gagné (Diptera: Cecidomyiidae) y prácticas
de manejo en cultivos de tomate en Manabí, Ecuador
Interacção entre a incidência de Prodiplosis longila Gagné (Diptera: Cecidomyiidae) e as práticas
de gestão nas culturas de tomate em Manabí, Equador
1
Escuela Superior Politécnica Agropecuaria de Manabí. Av.
10 de Agosto y G. Centeno. Calceta, Ecuador.
2
Instituto Nacional de Investigaciones Agropecuarias.
Estación Experimental Portoviejo. Km 12 vía Santa Ana.
Cantón Portoviejo, Ecuador.
Received: 02-05-2022
Accepted: 08-10-2022
Published: 02-11-2022
Abstract
The insect pest Prodiplosis longila Gagné (Diptera: Cecidomyiidae),
causes severe losses to the tomato crop in Ecuador, in the provinces of
Manabí, Pichincha, Carchi, Cotopaxi, Azuay, and Chimborazo, where the
main producing areas of this solanaceous crop in the country are located.
The objective of this research was to study the interaction of the incidence
of this pest with tomato crop management practices. The evaluations were
carried out in twenty-ve production units in different cantons of Manabí:
in Bolívar (two), Portoviejo (eight), Rocafuerte (ve), Santa Ana (one),
Sucre (three) and Tosagua (six). Each unit had an area of 2500 m
2
, where
25 plants were randomly marked and the number of healthy, infested
and damaged shoots was recorded, as well as the number of healthy and
damaged fruits. In addition, a survey was applied to growers to determine
the management practices carried out during the crop cycle. Descriptive
analysis, signicance tests, hierarchical clustering and chi-square tests were
carried out. It was determined that in the cantons of Portoviejo, Tosagua
and Rocafuerte, infestations did not exceed 13 % and a severity of up to 15
%, reaching 25 % of damaged fruit in Tosagua. The agronomic practices
applied were trellising, drip and gravity irrigation, collection of infested fruit
and chemical insecticides. There was an interaction with P. longila between
infested fruit collection and trellising, which inuenced its infestation and
severity, respectively. These incidences were signicantly high at harvest,
where highly toxic insecticide applications were substantially increased
indiscriminately.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(4): e223950. October-December. ISSN 2477-9407.2-7 |
Resumen
La plaga insectil Prodiplosis longila Gagné (Diptera:
Cecidomyiidae), provoca severas pérdidas al cultivo de tomate en
Ecuador, en las provincias de Manabí, Pichincha, Carchi, Cotopaxi,
Azuay y Chimborazo, donde están las principales áreas productoras
de esta solanácea en el país. El objetivo de esta investigación fue
estudiar la interacción de la incidencia de esta plaga con las prácticas
de manejo del cultivo de tomate. Las evaluaciones se efectuaron en
veinticinco unidades productivas, en diferentes cantones de Manabí:
en Bolívar (dos), Portoviejo (ocho), Rocafuerte (cinco), Santa Ana
(uno), Sucre (tres) y Tosagua (seis). Cada unidad tuvo un área de
2500 m
2
, en donde se marcaron aleatoriamente 25 plantas, y se
registró número de brotes sanos, infestados y con daño; así como,
números de frutos sanos y dañados. Además, se aplicó una encuesta
a los productores para determinar las prácticas de manejo realizadas
durante el ciclo del cultivo. Se efectuaron análisis descriptivos,
pruebas de signicación, conglomerados jerárquicos y chi cuadrado.
Se determinó que en los cantones Portoviejo, Tosagua y Rocafuerte,
presentaron infestaciones no superiores al 13 % y una severidad hasta
el 15 %, alcanzando Tosagua el 25 % de frutos dañados. Las prácticas
agronómicas aplicadas fueron, tutoreo-amarre, riego por goteo y
gravedad, recolección de frutos infestados e insecticidas químicos.
Entre la recolección de frutos infestados y tutoreo-amarre existió una
interacción con P. longila, que inuyó en su infestación y severidad,
respectivamente. Estas incidencias fueron signicativamente altas en
la cosecha, donde se incrementaron sustancialmente las aplicaciones
de insecticidas altamente tóxicos en forma indiscriminada.
Palabras clave: Plaga insectil, solanácea, infestación, severidad,
prácticas culturales.
Resumo
A praga Prodiplosis longila Gagné (Diptera: Cecidomyiidae),
causa graves perdas à cultura do tomate no Equador, nas províncias
de Manabí, Pichincha, Carchi, Cotopaxi, Azuay e Chimborazo,
onde se localizam as principais zonas produtoras desta cultura de
solanáceas no país. O objectivo desta investigação foi o de estudar
a interacção da incidência desta praga com as práticas de gestão
das culturas de tomate. As avaliações foram realizadas em vinte e
cinco unidades de produção em diferentes cantões de Manabí: em
Bolívar (dois), Portoviejo (oito), Rocafuerte (cinco), Santa Ana
(uma), Sucre (três) e Tosagua (seis). Cada unidade tinha uma área de
2500 m
2
, onde 25 plantas foram marcadas aleatoriamente, e o número
de rebentos saudáveis, infestados e danicados foi registado, bem
como o número de frutos saudáveis e danicados. Além disso, foi
aplicado um inquérito aos cultivadores para determinar as práticas
de gestão levadas a cabo durante o ciclo de cultivo. Foram realizadas
análises descritivas, testes de signicância, agrupamento hierárquico
e testes de qui-quadrado. Foi determinado que nos cantões de
Portoviejo, Tosagua e Rocafuerte, as infestações não excederam 13
% e uma severidade até 15 %, chegando a Tosagua a 25 % dos frutos
danicados. As práticas agronómicas aplicadas foram: aramação,
irrigação por gotejamento e gravidade, colheita de frutos infestados
e insecticidas químicos. Houve uma interacção entre a recolha de
fruta infestada e a lavoura com P. longila, o que inuenciou a sua
infestação e severidade, respectivamente. Estas incidências foram
signicativamente elevadas na colheita, onde as aplicações de
insecticidas altamente tóxicos foram substancialmente aumentadas
indiscriminadamente.
Palavras-chave: Praga de insectos, solanáceas, infestação,
severidade, práticas culturais.
Introduction
Tomato (Solanum lycopersicum L.) is a vegetable in high demand,
since its consumption is associated with its important nutritional
properties (Arroyo et al., 2018), therefore its cultivation has increased
worldwide (Trust Funds for Agricultural Development [FIRA],
2017). In Ecuador, 91 % of the production areas are located in the
provinces of Imbabura, Manabí, Pichincha, Carchi, Cotopaxi, Azuay,
and Chimborazo. In Manabí, in 2021, 35 ha were established with a
production of 319 t and an average yield of 9.02 t.ha
-1
(Agricultural
Public Information System [SIPA], 2021).
In Ecuador, Prodiplosis longila Gagné (Diptera: Cecidomyiidae)
constitutes the main pest of economic importance of the tomato crops,
limiting production and protability of the crop, since the costs for its
control represent up to 50 % of the total production cost (Cañarte et
al., 2015; Polo, 2017).
The damage of P. longila is caused by its larva in the rst instars
(Cardona et al., 2010), with losses of up to 100 % of production
(Cañarte et al., 2015). In the ower, it affects the epidermal cells of
the ovary, pistils, and stamens (Peña and Mead, 2016). The female
oviposits on the plant epidermis, without perforating the tissues, in
protected areas such as closed buds, ower buds, and at the base of
the fruits (Díaz, 2011), where upon hatching, the newly emerged
larvae feed on these tender tissues, scraping the surface of the bundle,
whose damage turns it blackish and in young fruits causes necrotic
scars that deform the base, taking away its commercial value (Geraud
et al., 2022).
The biological cycle of P. longila is 11 to 24 days, distributed
in three larval instars (2-3 days), pre-pupa (2-3 days), pupa (6-7
days) and adult (1-2 days), except for certain eld or laboratory
variations (Valarezo et al., 2003; Díaz, 2011; Geraud et al., 2022).
It is a multivoltine species, which develops 18 to 22 generations per
year, depending on environmental conditions of temperature, relative
humidity and precipitation (Díaz, 2011).
The control of P. longila is almost exclusively chemical, with
extremely toxic insecticides, such as metamidophos (Valarezo et
al., 2003; Polo, 2017; Chirinos et al., 2020), triazophos (Fernández,
2016), benfucarb (Polo, 2017), methomyl (Polo, 2017; Chirinos et
al., 2020) applied during the crop cycle, including the harvest stage.
The use of this type of insecticides generates environmental pollution
and ecological imbalance (Hernández et al., 2015), affecting human
health (Lindao et al., 2017), which affects the quality of life of the
producer (Bravo et al., 2020).
In view of this situation, the implementation of sustainable
integrated management programs should be considered, which
include: 1) biological control through the action of predators,
parasitoids and pathogens (Díaz, 2011; Cedano and Cubas, 2012),
2) genetic control with the use of cultivars that are harmless to the
attack of P. longila (Mena et al., 2014), 3) cultural control (Cañarte
et al., 2015), 4) ethological (Camborda et al., 2015), in order to
reduce or eliminate insecticide applications, which are responsible
for the increased incidence of this species as a tomato pest, due to
the elimination in the eld of one of its natural biological controllers
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Bolívar et al. Rev. Fac. Agron. (LUZ). 2022, 39(4): e2239503-7 |
(Synopeas sp.), which was reported by Geraud et al. (2022)
parasitizing the larvae of P. longila in the tomato crop in Ecuador.
Consequently, the objective of this research was to determine the
interaction between the incidence of the pest and the agronomic and
phytosanitary practices applied by producers in tomato crops in six
cantons of the province of Manabí, Ecuador.
Materials and methods
This research was developed in crops established by tomato
growers in open elds, where a single production cycle was evaluated
between March 2019 and January 2020, in the cantons of Bolívar,
Portoviejo, Rocafuerte, Santa Ana, Sucre, and Tosagua (gure 1). The
province of Manabí is at coordinates 40°40’00 “S and 80°05’00 “W
(National Geospatial-Intelligence Agency [NGA], 2022).
Figure 1. Location of the study area in cantons of the province of
Manabí, Ecuador.
Implementation of the study
It was framed in two areas: an analysis of the infestation and
severity of damage of P. longila, for which 25 tomato production
units were identied in the province of Manabí, considering the
cantons: Bolívar (2), Portoviejo (8), Rocafuerte (5), Santa Ana (1),
Sucre (3), and Tosagua (6). In each one, an observation area of 2500
m
2
was delimited, within which, a minimum of 25 tomato plants
were randomly marked 10 days after being established in the eld for
statistical support (Badii et al., 2008). The varieties established in the
province were Margot and Acerado, as well as the Zodiac, Prieto, and
Revolución hybrids, all of which are cultivars genetically susceptible
to P. longila. The information required during the development of
the crop (ni = 25) was evaluated in these materials. For this purpose,
analysis of optimal sample size was not applied, since it is a nite
population, where the variance of the qualitative characteristics is
unknown (Bernal, 2006).
Additionally, the phytosanitary management program used by the
producer to control the pest was considered. For this, the estimated
universe of tomato producers in Manabí was assessed through an
analysis of the planting area in the 24 cantons of the province of
Manabí, which is 139 ha (SIPA, 2021). For the present study, six
cantons with the highest production of this vegetable were delimited,
with an approximate planting area of 60 ha, and the average size of
the production units was 2 ha. These data allowed to estimate the
population of growers (30). Badii et al. (2008), mentioned that
for the statistical support of the survey data, the calculation of the
optimal sample size [Formula 1], which estimated a total number of
25 growers to be surveyed, with a 95 % probability of success and a
margin of error of 10 %, should be carried out.
Formula: [1]
Where:
N= tomato producers (30)
Z = probability of making a mistake in the decision Z=1.96 for
α=0.05)
p = hit = 0.05
q = not right = 0.95
d = maximum error accepted by the researcher (0.1)
Data recording
The incidence data of P. longila and severity of damage caused
by this pest on apical shoots, and fruits were taken from 25 tomato
plants, in addition, cultural practices carried out on each crop were
recorded. Field evaluations were performed every 15 days during
the crop cycle. The variables evaluated were: the number of shoots
(healthy, infested, and damaged) and the total number of healthy and
damaged fruits by P. longila.
With this information, the percentages of infestation and severity
(shoot and fruit damage) were calculated by applying the formulas
described by González et al. (1995):
Infestation (I%)
N° of shoots with presence of P. longifila larvae/plant
I%= (100)
N° total of shoots/plant
Severity-damage (S%)
N° of shoots with damage,with and sithout the
present of P. longifila larvae/plant
S%= (100)
N° total of shoots/plant
Through a survey applied to the producers, the cultural practices
carried out during the crop cycle (pruning, trellising, irrigation, and
collection of infested fruits) and phytosanitary practices (applications
of insecticide) were established.
Statistical analysis
The descriptive analysis was performed, and to establish
signicant differences in infestation and severity, the non-parametric
Friedman test was used (Amat, 2018). To determine the similarities
and differences between the agronomic practices applied in tomato
crops in the six cantons, cluster analysis was performed. This is a
multivariate statistical technique that seeks to group elements (or
variables) trying to achieve maximum homogeneity in each group,
and the greatest difference between groups (De la Fuente, 2011).
The Euclidean distance was used to dene similarity. Ward’s method
was used for clustering and cophenetic correlation to determine the
validity of the test. To demonstrate the level of relationship between
n
optimal
=
𝑁. 𝑍
𝛼/2
2
.𝑝.𝑞
𝑑
2
(
𝑁−1
)
+𝑍
𝛼/2
2
.𝑝.𝑞
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(4): e223950. October-December. ISSN 2477-9407.4-7 |
Damage severity (%) of Prodiplosis longila
Regarding the behavior of P. longila by canton, the Friedman
test at 95 %, determined signicance in the severity levels of P.
longila in tomato crops in the six cantons. Portoviejo, Tosagua,
and Rocafuerte showed similar damage to apical shoots up to 15 %
(table 2). This percentage is lower than those reported by Valarezo
et al. (2003), who indicated damage to apical shoots greater than 70
and 80 % in Portoviejo and Santa Ana, respectively, during the dry
season in the owering and fruiting stages. Regarding the severity
of P. longila in fruits per plant, Portoviejo, Tosagua, and Bolívar
showed up to 25 % damage, in contrast to the other cantons that did
not exceed 9 % in both variables.
Similarly, signicant differences were established at 95 %,
in the phenological stages, where the harvest reached an average
damage of 31 %, and in the vegetative, owering, and fruiting
stages, affectation was recorded at 5 %. The average number of
fruits damaged by P. longila per plant was 14 % (table 2). These
percentages are greater than those reported by Valarezo et al.
(2003), who reported values of 11 % in fruits of tomato cultivars
for industrial use, and those reported by Cardona et al. (2010),
who established that 2.3 % of the total production was damaged
by this insect. These results could be associated with the chemical
management of the pest by growers, which is similar to the 30
applications reported by Cañarte et al. (2015), and which also
contrasts with the 45 sprays recorded by Chirinos et al. (2020)
during the crop cycle.
Through the survey carried out, it was possible to identify
the agronomic practices applied in each of the tomato plantations
evaluated. With the information recorded, a hierarchical cluster
analysis (ACJ) was performed, which indicated that these practices
were similar in the cantons of Tosagua, and Rocafuerte, approaching
this group Portoviejo (gure 1).
Table 2. Severity of Prodiplosis longila in apical shoots by phenological stages and in fruits, depending on insecticide applications in
cantons of Manabí, Ecuador.
Cantons
Severity (%) / phenological stages Damaged fruits/ plants(%) Application of insecticides
Vegetative Flowering Fruiting Harvest x
̄
x
̄
x
̄
Portoviejo (n= 8) 1.1 2 11 44 15a 19 a 29
Tosagua (n= 6) 0.3 3 8 46 14a 25 a 32
Rocafuerte (n= 5) 0.2 3 9 39 13a 7,8 b 29
Sucre (n= 3) 0 0 1 34 9 b 8 b 38
Santa Ana(n= 1) 0 0 0 21 5 b 7 b 24
Bolívar (n= 2) 0 0 2 4 1 b 12 a 32
Means 0.3 b 1 b 5 b 31 a 10 14 31
P> 0.05 probability of 95 %.
agronomic practices, infestation, and severity, a contingency table
was made, relying on the Chi-square statistic at 95 % condence to
know the signicance level at 95 % (De la Fuente, 2016).
Results and discussion
Infestation (I%) of Prodiplosis longila
The non-parametric Friedman test at 95 %, determined
signicance in the levels of infestation of P. longila in the tomato
crops of the six cantons. Rocafuerte, Tosagua, and Portoviejo
showed similar signicance, reaching up to 4 % infestation,
differing from the other cantons which did not exceed 2 % (table
1). These percentages contrast with those reported in Portoviejo,
and Santa Ana by Valarezo et al. (2003), whose infestation values
ranged from 50.5 % and 45.6 % respectively, with an intensive
insecticide application regime, highlighting that, in Santa Ana,
without insecticide application, infestation reached 70.5 %.
In relation to the population dynamics of P. longila according
to the phenological stages of the crop, during the vegetative and
owering stages, no larvae were observed in the production units
sampled, and the attack began during fruiting (0.8 %), which
increased at harvest stage (7.78 %) (table 1). However, it is known
that tomato emits abundant sprouting during its production cycle,
which makes it vulnerable to attack by P. longila (Díaz, 2011;
Cañarte et al., 2015; Geraud et al., 2022). During this research, low
average infestations were recorded, which are possibly related to
the high frequency of pesticide application (31 applications/average
cycle), results that coincide with those of Valarezo et al. (2003) and
Cardona et al. (2010), who recorded very similar infestations under
very similar conditions.
Table 1. Infestation of Prodiplosis longila in apical shoots by phenological stage and cantons, depending on insecticide applications, in
Manabí, Ecuador.
Cantons
Infestation(%) / phenological stage Application of insecticides
Vegetative Flowering Fruiting Harvest x
̄
x
̄
Rocafuerte (n= 5) 0 0 1.6 11.4 4 a
29
Tosagua (n= 6) 0 0 0.33 12.17 3 a
32
Portoviejo (n= 8) 0 0 1.25 11.13 3 a
29
Sucre (n= 3) 0 0 0 7 2 b
38
Santa Ana (n= 1) 0 0 0 4 1 b
24
Bolívar (n= 2) 0 0 1.5 1 0.6b
32
Means 0 b 0 b 0.8 b 7.78 a 2.23 31
P> 0.05 probability of 95 %.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Bolívar et al. Rev. Fac. Agron. (LUZ). 2022, 39(4): e2239505-7 |
The similarity of the cultural activities carried out in Santa Ana
and Sucre, places them in the same group, bringing Bolívar closer to
this cluster (gure 1).
Figure 1. Similarity in the application of practices of pruning,
trellising, drip irrigation, and collection of
fruits infested by Prodiplosis longifila in tomato
crop management in cantons of Manabí, Ecuador.
Diagnosis
According to the contingency matrix of categorical data and
Pearson’s Chi-squared statistic at 95 % probability, a relationship was
established between the agronomic practices of collection of infested
fruits, and trellising with the level of infestation and severity (high,
medium, low) of P. longila, respectively (table 3).
The practice of collecting infested fruits resulted in a low
infestation of P. longila in 36 % of the producers. This cultural
practice contemplated within the MIP allows interrupting the
biological cycle of the pest (Martínez, 2010), since, when collecting
tomato fruits with fresh lesions and larvae, it reduces the population
of P. longila and minimizes its pupe stage (Díaz, 2011). Regarding
trellising, 44 % of growers recorded low infestation, 28 % had a
medium infestation and 8 % had a high infestation. This practice
associated with pruning, allows the tomato crop to have greater light
penetration and aeration, unfavorable conditions for the establishment
of P. longila, which needs a dark environment with little ventilation
(Valarezo et al., 2003). This cultural practice, which is based on
preventing pest attack, and reducing damage (Díaz, 2011), could have
inuenced the level of severity of P. longila.
Table 4 shows the insecticides applied on the tomato crop. A
total of 21 chemical groups and 37 active ingredients were used,
predominantly phosphorous, neonicotinoids, and tetramic acids.
Triazofos, pirimiphos-methyl, and spirotetramat were the most
commonly applied in the phenological stages, particularly at harvest.
There is the application of insecticides banned in Ecuador, such as
methamidophos (Agrocalidad, 2020). Some of these insecticides
are of extremely and highly toxic categories, being applied after
transplanting, with a maximum of three controls/week in the
vegetative stage and four sprays/week from owering to harvest,
without observing the toxicological deciency of the products, which
uctuate in 8 to 21 days between the last application and harvest, as
noted by Reinoso (2015).
These results indicate that tomato agroecosystems in Manabí are
seriously disturbed, since the appearance of P. longila in Manabí
in 1988 (Valarezo et al., 2003), many producers indiscriminately
use extremely toxic insecticides to combat it (Cañarte et al., 2015).
According to Chirinos et al. (2020), this dependence on chemical
Table 3. Relationship between agronomic practices and the infestation and severity of Prodiplosis longila in six cantons of Manabí,
Ecuador.
Variables Infestation Total Pearson’s
chi-squared
test
Severity Total Pearson’s
chi-squared
test
Categories Low Medium High Low Medium High
Collection of infested fruits
Yes 9 1 0 10
0.008*
6 3 1 10
0,508No 4 9 2 15 6 5 4 15
Total 13 10 2 25 12 8 5 25
Drip irragation
Yes 8 6 2 16
0.541
6 6 4 16
0,369No 5 4 0 9 6 2 1 9
Total 13 10 2 25 12 8 5 25
Gravity irrigation
Yes 6 4 0 10
0.463
7 2 1 10
0,196No 7 6 2 15 5 6 4 15
Total 13 10 2 25 12 8 5 25
Tresilling
Yes 11 7 2 20
0.523
11 7 2 20
0,043*No 2 3 0 5 1 1 3 5
Total 13 10 2 25 12 8 5 25
Pruning practices
Yes 10 7 2 19
0.659
10 7 2 19
0,106No 3 3 0 6 2 1 3 6
Total
13 10 2 25 12 8 5 25
P> 0.05 probability of 50 %.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(4): e223950. October-December. ISSN 2477-9407.6-7 |
Table 4. Insecticides applied to combat Prodiplosis longila in tomato crop by phenological stages in six cantons of Manabí, Ecuador.
Chemical groups i. a.
*Toxic
level
Application of insecticides
Vegetative Flowering Fruiting Harvest
Phosphorates
Triazofos Ib 11 16 15 18
Pirimiphos-methyl III 12 11 12 15
Methamidophos Ib 6 7 6 6
Malathion III 2 5 6 5
Profenofos II 6 5 3 3
Dimethoate II 2 3 3 3
Chlorpyrifos II 1 2 1
Acephate III 1
Neonicotinoids
Imidacloprid III 7 4 8 8
Acetamiprid III 8 8 8 13
Clothianidin III 1 1 2
Tetramic Acids Spirotetramat III 11 14 12 13
Avermectin
Abamectin II 6 3 10 9
Emamectin + benzoate III 1 2 4 4
Pyrethroid + Nitroguani-
dines
Lambdacyhalotrin+ Thiame-
thoxam
II 8 7 8 8
Naturalyte
Spinetoram-J-L IV 5 7 4 8
Spinosad A and D IV 1
Carbamates
Benfuracarb II 2 5 4 5
Methomyl Ib 3 5 1 4
Thiodicarb II 1 2 4
Carbosulfan II 2 2 1
*Toxic level: Ib Extremely; II Highly; III Moderately; IV Slightly.
Literature cited
Agrocalidad (2020). Plaguicidas prohibidos en el Ecuador. Coordinación General
de Registro de Insumos Agropecuarios Dirección de Registro de Insumos
Agrícolas. Agencia de Regulación y Control Fito y Zoosanitario. https://
www.agrocalidad.gob.ec/wp-content/uploads/2020/05/Plaguicidas-
prohibidos-en-Ecuador-1.pdf
Amat, J. (2018). Test de Friedman. h ttps://www.cienciadedatos.net/
documentos/21_friedman_test
Arroyo, P., Mazquiaran, L., Rodríguez, P., Valero, T., Ruiz, E., Ávila, J. & Varela, G.
(2018). Informe de estado situación sobre “frutas y hortalizas: nutrición
y salud en la España del S. XXI”. https://www.fen.org.es/storage/app/
media/imgPublicaciones/informe_frutas_y_hortalizas_fen_2018-v1.pdf
Badii, M., Castillo J. & Guillen, A. (2008). Tamaño óptimo de la muestra
(Optimum sample size). InnOvaciOnes de NegOciOs, 5(1): 53 - 65.
https://www.researchgate.net/publication/315814025_Tamano_optimo_
de_la_muestra_Tamano_optimo_de_la_muestra_Optimum_sample_size
Bernal, C. (2006). Metodología de la investigación. Para administración,
economía, humanidades y ciencias sociales. Pearson Educación. México.
p. 304.
Bravo, R., Villafuerte, A., Peñarrieta, S., Santana, F., Zambrano, F. & Fimia, R.
(2020). Diagnóstico de uso e impactos de plaguicidas en el cultivo de
tomate (Solanum lycopersicum L.) en la parroquia Rio Chico, cantón
Portoviejo, provincia de Manabí, Ecuador. El Biólogo, 18(1),105-118.
DOI: 10.24039/rtb2020181476
Camborda, F., Castillo, J. & Rodríguez, S. (2015). Trampas de luz con panel
pegante para la captura de adultos de Prodiplosis longila Gagné (Diptera:
Cecidomyiidae) en el cultivo de espárrago. https://revistas.lamolina.edu.
pe/index.php/eau/article/view/90/89
Cañarte, E., Valarezo, O. & Navarrete, J. (2015). Manejo integrado de Prodiplosis
longila (Diptera: Cecidomyiidae) principal plaga de tomate en
Ecuador. https://www.researchgate.net/publication/304346513_Manejo_
integrado_de_Prodiplosis_longila_Diptera_Cecidomyiidae_principal_
plaga_del_tomate_en_Ecuador
control in monoculture planting systems leads to a selection pressure
of resistant insect populations, which causes an ecological imbalance
between phytophagous and benecial insects (Ortega et al., 2014).
This situation, according to Geraud et al. (2022), is caused by the lack
of knowledge that producers have about the bioecology of P. longila,
which makes its rational management impossible because the
insecticides applied are also eliminating the populations of Synopeas
sp. (Hymenoptera: Platygastridae) that are parasitoids of the larvae
of P. longila in the tomato crops evaluated. Hence, the importance
of the integration of combat methods such as biological (Cedano and
Cubas, 2012), genetic (Mena et al., 2014); and ethological, Camborda
et al. (2015), which are environmentally friendly methods.
Conclusions
The levels of infestation and severity of P. longila in the
evaluated areas were signicantly high only during harvest, where
growers substantially increased the application of highly toxic
insecticides indiscriminately.
The practices widely used by tomato growers in the study area are
pruning, trellising, drip and gravity irrigation, collection of infested
fruits, and the use of insecticides of various chemical groups.
There was a relationship between the agronomic practices of
collecting infested fruits and trellising implemented by the growers
with the infestation and severity of P. longila.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Bolívar et al. Rev. Fac. Agron. (LUZ). 2022, 39(4): e2239507-7 |
Cardona, C., Yepes, F. & Cotes, J. (2010). Evaluación de la rotación de
plaguicidas químicos y biológicos sobre Prodiplosis longila Gagné
(Diptera: Cecidomyiidae) en tomate (Solanum lycopersicum L.). Revista
Facultad De Ciencias Básicas, 6(1):66-81. https://revistas.unimilitar.edu.
co/index.php/rfcb/article/view/2116
Cedano, C. and Cubas, P. (2012). Baeuveria bassiana (Bals) Vuill y
Metarhizium anisioplae (Metsch.) Sorokin para el control de pupas
de Prodiplosis longila Gagné en el cultivo de espárrago. Scientia
Agropecuaria, 3(1), 29-34. https://www.redalyc.org/articulo.
oa?id=357633701004
Chirinos, D., Castro, R., Cun, J., Castro, J., Peñarrieta, S., Solís, L. & Geraud, F.
(2020). Los insecticidas y el control de plagas agrícolas: la magnitud de su
uso en cultivos de algunas provincias de Manabí. Ciencia y Tecnologías
Agropecuarias, 21(1): e1276. https://doi.org/10.21930/rcta.vol21_num1_
art:1276
De la Fuente, S. (2011). Análisis de Conglomerados. Facultad de Ciencias
Económicas y Empresariales. Universidad Autónoma de Madrid.
https://www.fuenterrebollo.com/Economicas/ECONOMETRIA/
SEGMENTACION/CONGLOMERADOS/conglomerados.pdf
De la Fuente, S. (2016). Aplicaciones de la Chi-cuadrado: Tabla de contingen-
cia. Homogenidad. Dependencia e independencia. Gestión Aeronáutica:
Estadística Teórica. Facultad de Ciencias Económicas y Empresariales.
Departamento de Economía Aplicada. Universidad Autónoma de Madrid.
https://www.fuenterrebollo.com/Aeronautica2016/contingencia.pdf
Díaz, F. (2011). Aspectos agroecológicos para el manejo integrado de Prodiplosis
longila Gagné en la irrigación de Chavimochic. https://www.academia.
edu/15424714/Aspectos_Agroecol%C3%B3gicos_para_el_Manejo_In-
tegrado_de_Prodiplosis_longifila_Gagn%C3%A9_en_la_Irrigaci%-
C3%B3n_Chavimochic
Fernández, E. (2016). Comparativo de insecticidas para el control de Prodiplosis
longila Gagné (Diptera: Cecidomyiidae) en el cultivo de papa (So-
lanum tuberosum) var. Canchán. https://repositorio.lamolina.edu.pe/
handle/20.500.12996/2632
FIRA (Fideicomiso Instituido En Relación Con La Agricultura). (2017). Tomate
rojo 2017. Panorama Agroalimentario. Dirección de Investigación y
Evaluación Económica y Sectorial. https://www.ra.gob.mx/InfEspD-
toXML/abrirArchivo.jsp?abreArc=65310
Geraud, F., Garces, A., Contreras, N. & Geraud, J. (2022). Prodiplosis longila
(Diptera: Cecidomyiidae), evolución como plaga y un método para eva-
luar sus poblaciones en tomate. Revista Colombiana de Entomología, 48
(1): e7807. https://doi.org/10.25100/socolen.v48i1.7807
González, C., Borges, M., Castellanos, A., González, N., Vázquez, L. & García,
M. (1995). Phyllocnistis citrella Stainton. Minador de la hoja de los
cítricos. In II taller nacional sobre el minador de la hoja de los cítricos
Phyllocnistis citrella Stainton. Phyllocnistis citrella Stainton. (La Haba-
na, CU). 35 p.
Hernández, L., Guzmán, C., Martínez, A., Manzano, M. & Sejvarj, J. (2015). The
bud midge Prodiplosis longila: Damage characteristics, potential distri-
bution and presence on a new crop host in Colombia. SpringerPlus 4, 205.
https://doi.org/10.1186/s40064-015-0987-6
Lindao, V., Jave J., Retuerto, M., Erazo, N. & Echeverría, M. (2017). Impacto en
los niveles de colinesterasa en agricultores de tomate (Solanum lycoper-
sicum L.) en la localidad de San Luis, Chimborazo por efecto del uso
de insecticidas organofosforados y carbamatos. Revista del Instituto de
Investigación FIGMMG-UNMSM, 20(40), 114-119. https://revistasinves-
tigacion.unmsm.edu.pe/index.php/iigeo/article/view/14400
Martínez, N. (2010). Manejo Integrado de Plagas: Una solución a la contamina-
ción ambiental. Comunidad y salud, 8(1), 73-82. http://ve.scielo.org/scie-
lo.php?script=sci_arttext&pid=S1690-32932010000100010
Mena, Y., Mesa, N., Estrada, E. & García, Y. (2014). Evaluación de la resistencia
a Prodiplosis longila Gagné (Diptera: Cecidomyiidae) en genotipos
de tomate cultivados y silvestres. Acta Agronómica, 63(2),181-190.
doi:DOI:10.15446/acag.v63n2.30210
NGA (National Geospatial-Intelligence Agency). (2022). Provincia de
Manabí, Ecuador - Nombres Geográcos, mapa. Bethesda,
MD, USA. https://geograainfo.es/nombres_geogracos/name.
php?uni=1376520&d=1580&c=ecuador
Ortega, E., Sierra, C., Mayanga, A., Morey, G., Graterol, L., Dyer, P. & Mialhe,
E. (2014). Identicación molecular de la mosquilla del brote Prodiplosis
sp. Gagné en los cultivos de Asparagus ofcinalis L. por amplicación
parcial del gen citocromo oxidasa I. IDESIA (Chile). 32 (4), 29-41.
https://www.scielo.cl/pdf/idesia/v32n4/art05.pdf
Peña, J. y Mead, F. (2016). Citrus gall midge, Prodiplosis longila Gagné (Insecta:
Diptera: Cecidomyiidae). University of Florida. IFAS Extension EENY-
035. http://ufdcimages.uib.u.edu/IR/00/00/38/25/00001/IN16200.pdf
Polo, J. (2017). Estudio del control químico de Prodiplosis longila Gagné en
Lycopersicum esculentum Mill, en Huanchaco, La Libertad. Tesis.
Escuela Académico Profesional de Agronomía. Universidad Nacional
de Trujillo. Trujillo. Perú. 91 p. https://dspace.unitru.edu.pe/bitstream/
handle/UNITRU/9932/POLO%20VALENCIA,%20JOEL%20ELIPIO.
pdf?sequence=1&isAllowed=y
Reinoso, J. (2015). Diagnóstico del uso de plaguicidas en el cultivo de tomate riñón
en el Cantón Paute. MASKANA, 6 (2),147-154. https://publicaciones.
ucuenca.edu.ec/ojs/index.php/maskana/article/view/495/419
SIPA. (Sistema de Información Publica Agropecuaria). (2021). Cifras Agro
productivas. MAG. http://sipa.agricultura.gob.ec/index.php/cifras-
agroproductivas
Valarezo, O., Cañarte, E., Navarrete, J. & Arias, M. (2003). Prodiplosis longila
principal plaga de tomate en el Ecuador. Portoviejo, Ecuador: INIAP,
Estación Experimental Portoviejo. Manual Nº 51. http://repositorio.iniap.
gob.ec/handle/41000/1324