© The Authors, 2021, Published by the Universidad del Zulia*Corresponding author: byronleonardoqg@hotmail.com
Energy and economic costs of YTO DF 15L and DONGFENG DF 151L power tillers in soil
preparation
Costos energéticos y económicos de los motocultores YTO DF 15L y DONGFENG DF 151L en la
preparación de suelos
Custos energéticos e econômicos das motocultivadoras YTO DF 15L e DONGFENG DF 151L na
preparação do solo
Byron Quimís-Guerrido
1, 2
*
Liudmyla Shkiliova
1, 3
Benito Guerrero-Arboleda
1, 4
Franco-Plaza, Felipe
1, 5
Zambrano-Arteaga, Ramón
1, 6
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223907
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v39.n1.07
Crop Production
Associate editor: Ing. Agr. MSc. Andreina Garcia
1
Maestría en Agronomía, Mención Mecanización Agrícola,
Instituto de Posgrado, Universidad Técnica de Manabí,
Ecuador.
2
Operadora de Capacitación Profesional (OPECAP),
Jipijapa, Manabí, Ecuador.
3
Universidad Técnica de Manabí, Facultad de Ingeniería
Agrícola, Ecuador.
4
Universidad Técnica Luis Vargas Torres de Esmeraldas,
Ecuador.
5
Unidad Educativa Galo Plaza Laso de Daule, Guayas,
Ecuador.
6
Gobierno Autónomo Descentralizado de Chone, Manabí,
Ecuador.
Received: 23-03-2021
Accepted: 27-09-2021
Published: 15-12-2021
Abstract
The objective of this study was to determine the energy and economic
cost of the YTO DF 15L and DONGFENG DF 151L mechanized agricultural
sets (double pass of rotovator) in the work of preparation of sandy-clay
and loamy-clay soils, respectively. The methodology for determining total
energy costs (MJ.h
-1
) and per worked area (MJ.ha
-1
) was used; likewise,
Cuban Standard NC 34-38:2003 allowed the calculation of total economic
costs (USD.h
-1
) and per worked area (USD.ha
-1
). The main ndings showed
that the total energy cost (EST) reached values of 78.50 and 75.30 MJ. h
-1
,
with the energy sequestered by fuel (ESc) indicator prevailing with a share
of 55 and 58.4%, in the EST structure, the energy costs per worked area EST
(ha) registered 1.574.00 and 1.883.00 MJ.ha
-1
. On the other hand, the direct
operating cost (Gd), reported 5.31 and 5.68 USD.h
-1
, with the cost per salary
(Gs), the indicator that predominated with 68.and 70.4% in the distribution
of Gd, and the cost per worked area (Gex), presented gures of 106.20 and
142.00 USD.ha
-1
, for the YTO DF 15L and DONGFENG DF 151L sets,
respectively. The YTO DF 15L power tiller, with rotovator, distinguished
itself as the agricultural set with the lowest EST (ha) and Gex, by 16 and
25%, respectively, in the agricultural operation provided.
Keywords:
Sequestered energy
Cost of operation
Rotary tillage
Power tiller
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223907. January - March. ISSN 2477-9407.2-6 |
Resumen
El objetivo de este estudio fue determinar el costo energético
y económico de los conjuntos agrícolas mecanizados YTO DF15L
y DONGFENG DF 151L, con doble pase de rotovator, en labor de
preparación de suelos franco arenoso arcilloso y arcilloso limoso,
respectivamente. Se utilizó la metodología para determinación de
costos energéticos totales (MJ.h
-1
) y por área trabajada (MJ.ha
-1
);
asimismo, la Norma Cubana NC 34-38:2003 permitió calcular los
costos económicos totales (USD.h
-1
) y por área trabajada (USD.
ha
-1
). Los principales hallazgos mostraron que el costo energético
total (EST) alcanzó valores de 78.50 y 75.30 MJ.h
-1
, prevaleciendo
el indicador energía secuestrada por combustible (ESc) con
participación de 55 y 58.4%, en la estructura de EST, los costos
energéticos por área trabajada EST (ha) registraron 1.574.00 y
1.883.00 MJ.ha
-1
. Por otra parte, el costo directo de operación (Gd)
se reportó en 5.31 y 5.68 USD.h
-1
, siendo el costo por salario (Gs) el
indicador que predominó con 68 y 70.4% en la distribución de Gd, y
el costo por área trabajada (Gex), presentó cifras de 106.20 y 142.00
USD.ha
-1
, para los conjuntos YTO DF 15L y DONGFENG DF 151L,
respectivamente. El motocultor YTO DF 15L, con rotovator, se
distinguió como el conjunto agrícola con menor EST (ha) y Gex, en
16 y 25%, respectivamente, en la operación agrícola dispuesta.
Palabras clave: Energía secuestrada, costo de operación, labranza
rotativa, motocultor.
Resumo
O objetivo deste estudo foi determinar o custo energético e
econômico das unidades agrícolas mecanizadas YTO DF 15L
e DONGFENG DF 151L, com dupla passagem de rotovator,
na preparação de argila arenosa e solos de argila sedimentosa,
respectivamente. A metodologia foi utilizada para determinar os custos
totais de energia (MJ.h
-1
) e por área trabalhada (MJ.ha
-1
); da mesma
forma, a Norma Cubana NC 34-38:2003 permitiu o cálculo dos custos
econômicos totais (USD.h
-1
) e por área trabalhada (USD.ha
-1
). As
principais descobertas mostraram que o custo total de energia (EST)
atingiu valores de 78.50 e 75.30 MJ.h
-1
, prevalecendo o indicador
energia sequestrada por combustível (ESc) com participação de 55 e
58.4%, na estrutura do EST, os custos de energia por área trabalhada
EST (ha) registraram 1.574.00 e 1.883.00 MJ.ha
-1
. Por outro lado, o
custo operacional direto (Gd), informou 5.31 e 5.68 USD.ha
-1
, sendo
o custo por salário (Gs), o indicador que predominou com 68 e 70.4%
na distribuição de Gd, e o custo por área trabalhada (Gex), apresentou
valores de 106.20 e 142.00 USD.ha
-1
, para os conjuntos YTO DF 15L
e DONGFENG DF 151L, respectivamente. O motocultivador YTO
DF 15L, com rotovator, destacou-se como o conjunto agrícola com
o EST (ha) e Gex mais baixos, em 16 e 25%, respectivamente, na
operação agrícola arranjada.
Palavras-chave: Energia sequestrada, custo de operação, Equador,
lavoura rotativa, moto-cultivador.
Introduction
From the perspective of Devkota et al. (2020) agriculture has
evolved from manual labor to energy-powered machiner for specic
purposes, since the industrial revolution of the 18th century. Indeed,
the energy is a good that has a strategic character for the countries of
the world, intensifying in the last decades the activities related to the
energetic chain and its environmental consequences (Livas-García,
2015) Energy analysis identies and measures the sequestered
energy, associated with the manufacture of mechanical equipment,
that contained in materials used and transportation to the operation
site; and sequestered energy, associated with non-recoverable
consumables, such as fuels, fertilizers and seeds (Paneque et al.,
2002; Nourani and Bencheikh, 2017); whereby, the use of machines
and chemicals established energy as a key input in agriculture (Bojacá
et al., 2012).
Undoubtedly, operating costs are an important tool for the farmer
or agricultural entrepreneur (Reina and Hetz, 2010). The economic
evaluation determines the direct operating costs and other economic
effectiveness indexes, conclusive factors in the success of machined
works (De las Cuevas et al., 2008; Ramos and Lora, 2013)
Evidently, fuel is an important indicator of the operating costs of
mechanized means in agriculture (Fluck and Baird, 1980). However,
salaries, which are a fundamental component of these costs, deserve
substantial attention because of the currency, the U.S. dollar, which is
full and unique legal tender, adopted by Ecuador as of the year 2000.
It should be specied that the power tiller with rotovator, a primary
tillage set used in small farms and mountain agriculture, is mainly
designed for rotational tillage, in order to, prepare the soil properly
for sowing and eradicating the weeds for seeds; as well as, spraying
operations (Rasool and Raheman, 2015; Pushpitha et al., 2018)
Although the technological level of the Ecuadorian agricultural
sector and in the province of Manabi is low, it has availability of
165 days.year
-1
net, to carry out the mechanized tillage and sowing
of crops such as corn, peanuts and watermelon (Reina and Hetz,
2010), without forgetting rice cultivation in the Rocafuerte and
Sucre cantons (Charapotó parish). Therefore, it is essential that the
national and local governments, through public policies, promote
and implement projects and programs for agricultural innovation and
technication, technical assistance and training for producers, as well
as constant monitoring and evaluation, and relevant restructuring in
the same (Shkiliova et al., 2019).
Considering the above, the objective of the study is to determine
the total energy cost and the direct operating cost, and per unit of
work area, of the YTO DF 15L and DONGFENG DF 151L power
tillers with rotovator (double pass), in preparation of sandy clay loam
and silty clay soils to cultivate watermelon and corn, respectively.
Materials and methods
The eld study took place at Comuna Joá, located at 1
o
22’ 55’ LS
and 80
o
36’ 39’ LO, with an altitude of 247 mamsl; and Finca Juanito
(Estero Hondo site) located at 1
o
19’ 46’ LS and 80
o
35’ 3’ LO, with
an altitude of 469 mamsl, both located in the Jipijapa canton, province
of Manabí, Ecuador.
The information on experimental conditions was obtained through
the methodology of the Cuban standard NC 34-47 (2003) supported
by analyses in laboratories of Universidad Técnica de Manabí (UTM)
and Instituto Nacional de Investigaciones Agropecuarias INIAP -
Manabí.
The YTO DF 15L and DONGFENG DF 151L power tillers with
rotovator, whose technical specications are detailed in table 1, were
evaluated between 2018 and 2020 in soil preparation for corn and
watermelon sowing, respectively.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Quimís-Guerrido et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e2239073-6 |
Table 1. Technical characteristics of power tillers and implements.
Indicators U/M YTO DONGFENG
Country of origin The People’s Republic of China
Model DF 15L DF 151L
Dimensions (L x W x H) mm 2680 x 960 x 1250 2680 x 960 x 1290
Engine - S1100A2N ZS1100N
Fuel type - Diesel
Diesel tank capacity L 16 12
Power output kW/ hp 12/16 10.5/14
Rated speed rpm 2.200
Traction force kN 2.2 2.3
Tires/pressure PSI 6.00-12/ 25 6.00-12/ 22
Mass without rotovator kg 394 360
Rotovator
Implement width mm 620
Working width mm 600
Rotovator mass kg 105 85
Rotovator speed m
-1
baja/alta 211/345 207/340
Blades PCS 18
Source: MAGAP (2014) and DFMA (2020).
On the other hand, to precise total energy costs, direct
operating costs and costs per unit of worked area, of the
agricultural sets, information obtained in the field and under
literature review was used (table 2).
It should be noted that the salary of operators covered five
hours a day. The following methodologies were used to specify
the energy and economic cost records of the mechanized
agricultural sets:
Table 2. Inputs for methodological development of energy and economic costs.
Power tillers Rotovator
Supplies U/M YTO DF15L DONGFENG DF 151L YTO DONGFENG
Shelf life٭ h-años 5.000 – 10 1.500 - 3
Diesel price
+
USD.L
-1
0.27 - -
Depreciation Coeff.
++
% 12 10
Repair and maintenance
coeff.
++
% 7 15
Productivity (W
07
)
˄ ˃
ha.h
-1
0.05
˄
0.04
˃
- -
Hourly fuel consumption
(gtc)
˄ ˃
L.h
-1
0.91
˄
0.92
˃
- -
Source: *Hetz et al.,1997,
+
Terneus and Viteri, 2020,
++
Frank, 1998,
˄
Quimis-Guerrido and Shkiliova, 2019 and
˃
Quimís-Guerrido et al., 2020
.
Energy costs
With the method used by Hetz and Barrios (1997), Paneque et al.
(2002) and Paneque and Sánchez (2006) the total energy costs
were determined (MJ.h
-1
); adding the energy sequestered in the
construction materials including manufacturing and transportation,
fuel, lubricants/lters, repairs/maintenance, and necessary labor; as
well as, per unit of worked area (MJ.ha
-1
).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223907. January - March. ISSN 2477-9407.4-6 |
Table 3 shows the energy equivalents that allowed the
development of the aforementioned methodology.
Table 3. Energy equivalences of inputs.
Supplies
Equivalents U/M
Man day (8 hours)
18.2 MJ.h
-1
Fluck, 1981
1 kg of power tiller
109.0 MJ.kg
-1
Fluck, 1992
1 kg of rotovator
66.8 MJ.kg
-1
Fluck, 1992
1 L of diesel
47.8 MJ.L
-1
Fluck, 1992
Economic costs
For the determination of the direct costs of hourly operation
(USD.h
-1
) and per unit of worked area (USD.ha
-1
), the Cuban
standard NC 34-38 (2003) was used, which includes costs for
salaries, amortization, repair-maintenance and fuel.
Data recording and processing was carried out with Infostat
(version 2017) statistical software .
Results and discussion
Determination of test site conditions
Table 4 details the experimental conditions where the operators,
in command of the agricultural equipment, carried out the soil
preparation work.
Table 4. Characterization of the study areas (Comuna Joá and
Finca Juanito).
Denomination U/M Comuna Joá Finca Juanito
Type of soil
-
Sandy loam Clayey
loam
Clay-loam
Relief
% < 2 (Plain)
10 -12 (High
slope)
Average temperature
oC 24 – 29
Apparent density
g.cm
-3
1.31 1.28
Gravimetric humidity
% 18.52 13.00
Penetration resistance
MPa 1.00 1.80
Crop obstruction
kg.ha
-1
1.200.00 0.21
Through eld research, acquisition values of 2.738 USD and
2.584 USD for the power tillers and for the rotovator of 370 USD
and 329 USD were known (ILGA, 2021). In addition, the average
annual workload was 420 h and 400 h for YTO DF 15L and
DONGFENG DF 151L agricultural sets, respectively, according to
the range (400 - 450 h.year
-1
) recommended by Márquez (2010).
The salary of operators (ve-hour day) was USD 18 and USD 20
for YTO DF 15L and DONGFENG DF 151L, in accordance with
the provisions of Ministerio de trabajo del Ecuador (Ledesma, 2018
and Madero, 2019).
Determination of energy costs of the sets
Through the methodology used, the values of the total hourly
energy cost (EST) in (MJ.h
-1
) and the energy cost per worked area
EST (ha) in (MJ.ha
-1
), presenting the results of the energy indicator
calculations in gure 1.
Figure 1. Value of total energy cost indicators, in MJ.h
-1
Energy sequestered in fuel (ESc), in materials, manufacturing
and transportation (ESm), and in repairs and maintenance (ESmr),
were the characteristic indicators in the operation of the equipment,
with 55 and 58.4%, 22 and 20%, and 17 and 15.4% for the YTO DF
15L and DONGFENG DF 151L sets, respectively.
For both sets, energy sequestered in fuel (ESc) was the indicator
with the highest proportionality in the total energy cost structure
(EST), a nding similar to that reported by Miranda et al., (2009)
and Crespo (2018).
Likewise, in the two agricultural sets, the energy sequestered
in lubricants/lters (ESI) and the energy sequestered in repairs and
maintenance (ESmr) made up only 3% of the distribution of the
total energy cost (EST).
Table 5 shows the values achieved by the agricultural sets for
the total energy cost (EST) and per unit of worked area EST (ha).
Table 5. Energy cost values of the equipment.
Agricultural assemblies
Parameters
U/M YTO DF 15L
DONGFENG DF
151L
Total energy cost (EST)
MJ.h
-1
78.70 75.30
Per unit area worked EST
(ha)
MJ.ha
-1
1.574.00 1.883.00
The total energy cost (EST) reported 78.70 and 75.30 MJ.h
-1
for
YTO DF 15L and DONGFENG DF 151L, respectively. On the other
hand, the cost per unit of worked area EST (ha) of the DONGFENG
DF 151L set reached 1.883.00 MJ.ha
-1
, 16% higher than the value
of the YTO DF 15L set which was 1.574.00 MJ.ha
-1
. However,
these gures exceed the reported EST (ha) of 1.191.61 MJ.ha
-1
by
the Mahindra-Yuvraj mini tractor (15 hp) in soil preparation labor
(Dabhi et al., 2016). It is worth mentioning that the equipment
used for this research, manifest certain constructive and technical
similarities, such as the implement working width (0.60 m);
however, they differ in masses, being the YTO DF 15L set 54.00 kg
higher than the DONGFENG DF 151L (table 1).
On the other hand, the records reported between EST and
EST (ha) agree with the inverse proportionality, caused by better
productivity in the eld, proposed by Paneque and Soto (2007).
Determination of the direct operating costs of the sets
The direct operating costs (Gd) in (USD.h
-1
) and per worked
area (Gex) in (USD.ha
-1
), of the agricultural sets in soil preparation
were calculated based on the methodology of the Cuban standard
NC 34-38 (2003), showing records in gure 2.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Quimís-Guerrido et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e2239075-6 |
Figure 2. Indicator values of the direct cost of operation, in
USD.h
-1
.
Indeed, the cost per salary (Gs) was the indicator with the highest
disposition with 68 and 70.4%, followed by the amortization cost
(Ga) with 16.3 and 15.2%, the cost for repairs and maintenance
(Grm) with 11 and 10%, and with less incidence, due to the diesel
subsidy in Ecuador (Terneus and Viteri, 2020), the cost per fuel
(Gc) that represented 4.7 and 4.4% in the organization of the direct
operating cost (Gd), for the YTO DF 15L and DONGFENG DF
151L sets, respectively.
The aforementioned differs from the work of Ramos and Lora
(2013) and Crespo et al. (2018), who indicated that the highest
indicators in Gd were the cost of fuel consumption (Gc) and the cost
of maintenance and repairs (Grm), respectively. The variabilities
are subject to experimental, currency, cost and annual workload
factors of the equipment.
Consequently, table 6 shows the values achieved by the sets
under study regarding to the direct hourly operating cost (Gd) and
per unit of worked area (Gex).
Table 6. Economic cost values of the equipment.
Agricultural assemblies
Parameters
U/M
YTO DF
15L
DONGFENG
DF 151L
Direct operating cost (Gd ) USD.h
-1
5.31
5.68
Per unit area worked (Gex) USD.ha
-1
106.20
142.00
As can be observed, the hourly direct operating cost (Gd) reported
5.31 and 5.68 USD.h
-1
for the YTO DF 15L and DONGFENG DF
151L sets, respectively. The direct hourly operating cost (Gd) of the
latter set was 0.37 USD.h
-1
higher. It should be noted that the highest
hourly direct operating cost (Gd) and the lowest eld productivity
of the DONGFENG DF 151L set, caused that the direct operating
cost per unit of worked area (Gex) of 142.00 USD.ha
-1
was 25%
higher than that achieved by the YTO DF 15L set of 106.20 USD.
ha
-1
.
In addition, the results obtained in this study for Gex, exceed
the reported by the Indian manufacturing equipment, the Mahindra
-Yuvraj (15 hp) mini tractor and by the VST Shakti 130 DI (13 hp)
power tiller of 35.00 and 40.90 USD.ha
-1
(Dabhi et al., 2016; and
Rangapara et al., 2017), respectively.
It is evident that these records are not conclusive; since,
socioeconomic and edaphoclimatic variables of experimentation in
the realization of agricultural operations differ.
Conclusions
The total energy cost of agricultural operations in soil
preparation (EST) for the YTO DF 15L set is 78.50 MJ. h
-1
and for
DONGFENG DF 151L is 75.30 MJ. h
-1
. The dominant indicator
is the energy sequestered by fuel (ESc), which represents 55 and
58.4% of the EST distribution. Likewise, the energy cost per unit
of worked area EST (ha) amounts to 1.574.00 and 1.883.00 MJ.ha
-1
for the YTO DF 15L and DONGFENG DF 151L sets, respectively.
On the other hand, the direct operating cost (Gd) reached 5.31
and 5.68 USD.h
-1
, with the cost per salary (Gs) being the indicator
with the highest participation in the Gd structure, with 68 and 70.4%.
The operating cost per unit of worked area (Gex) registered 106.20
and 142.00 USD.ha
-1
, for the YTO DF 15L and DONGFENG DF
151L sets, respectively.
The YTO DF 15L set presents lower energy and operating
cost, per unit of worked area, EST (ha) and (Gex), in 16 and 25%,
correspondingly, in relation to the DONGFENG DF 151L set, in the
arranged agricultural operation.
Cited literature
Bojacá, C. R., Casilimas, H. A., Gil, R., y Schrevens, E. (2012). Extending
the input-output energy balance methodology in agriculture through
cluster analysis. Energy, 47(1), 465–470. https://doi.org/10.1016/j.
energy.2012.09.051
Crespo-Amaya, R., Paneque-Rondón, P., y Miranda-Caballero, A. (2018).
Determinación del costo energético y de explotación de la cosecha
mecanizada del arroz. Revista Ciencias Técnicas Agropecuarias, 27(2),
1–10.
Dabhi, K. L., Godhani, R. S., y Swarnkar, R. (2016). Comparative performance
of mini tractor draw tillage implements for seed bed preparation under
sandy loam conditions of middle Gujarat. International Journal of
Agricultural Engineering, 9(1), 53–61. https://doi.org/10.15740/HAS/
IJAE/9.1/53-61
De las Cuevas, H. R., Hernández, R. T., Herrera, P. M., y Paneque, R. P. (2008).
Software para la evaluación tecnológica de las máquinas agrícolas.
Revista Ciencias Técnicas Agropecuarias, 17(2), 24–28.
Devkota, R., Pant, L. P., Gartaula, H. N., Patel, K., Gauchan, D., Hambly-
Odame, H., Thapa, B., y Raizada, M. N. (2020). Responsible
agricultural mechanization innovation for the sustainable development
of Nepal’s hillside farming system. Sustainability (Switzerland), 12(1),
1–24. https://doi.org/10.3390/SU12010374
DFMA. (2020). Fabricante de tractores de 4 ruedas y motocultores en China
desde 1952. Changzhou Dongfeng Agricultural Machinery Group Co.,
Ltd. http://dftractor.es/2b-DF-15L-walking-tractor.html
Fluck, R C, y Baird, C. D. (1980). Agricultural Energetics. AVI Publishing
Company. https://books.google.com.na/books?id=aXFRAAAAMAAJ
Fluck, Richard C. (1992). Energy for farm production. In Energy for World
Agriculture (Vol. 6, p. 287). Elsevier, Amsterdam.
Fluck, Richard C. (1981). Net energy sequestered in agricultural labor.
Transactions of the ASAE, 24(6), 1449–1455.
Frank, L. (1998). Costos de la Maquinaria Agrícola, Cátedra de Administración
Rural (2da. ed.). FAUBA.
Hetz, E., Huerta, A., Villar, S., y López, M. (1997). Evaluación Económica
de los Tractores Agrícolas Comercializados en Chile. Universidad de
Concepción-Facultad de Ingeniería Agrícola. Chillán, Chile. http://
revistas.uach.cl/html/agrosur/v26n2/body/art04.htm
Hetz, E. J., y Barrios, A. I. (1997). Costo Energético de las Operaciones
Agrícolas Mecanizadas más Comunes en Chile. Agro Sur, 25(2), 146–
161. https://doi.org/10.4206/agrosur.1997.v25n2-03
ILGA. (2021). Motocultor DongFeng. Importadora ILGA. https://
ilgaimportadora.com/productos/motocultor-dong-feng/#
InfoStat. (2017). InfoStat-Software estadístico versión 2017. https://www.
infostat.com.ar/index.php?mod=noticia&id=49
Ledesma, R. (2018). República del Ecuador. Ministerio del Trabajo. Acuerdo
Ministerial Nro. MDT-2018-0001. Ministerio Del Trabajo. https://www.
trabajo.gob.ec/wp-content/uploads/downloads/2018/01/mdt-2018-
0001_fijación_de_sueldo_salarios_tarifas_para_el_sector_privado_
de_las_diferentes_comisiones_sectoriales.pdf?x42051
Livas-García, A. (2015). Análisis de insumo-producto de energía y observaciones
sobre el desarrollo sustentable, caso mexicano 1970-2010. Ingeniería,
Investigación y Tecnología, 16(2), 239–251. https://doi.org/10.1016/j.
riit.2015.03.008
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2022, 39(1): e223907. January - March. ISSN 2477-9407.6-6 |
Madero, A. (2019). República del Ecuador. Ministerio del Trabajo. Acuerdo
Ministerial Nro. MDT-2019-394. Ministerio Del Trabajo. https://
www.trabajo.gob.ec/wp-content/uploads/downloads/2020/01/2019-
Acuerdo-Ministerial-MDT-2019-394-SALARIO-BÁSICO.pdf
MAGAP. (2014). Contratación de mantenimiento preventivo y puesta en
marcha de 74 motocultores marca YTO, a través del procedimiento de
menor cuantía bienes y servicios.
Márquez, L. (2010). La Mecanización Agrícola en Pequeñas Propiedades Rurales.
IX Congreso Latinoamericano y Del Caribe de Ingeniería Agrícola -
CLIA 2010., 1–18. https://doi.org/10.1017/CBO9781107415324.004
Miranda, C. A., Paneque, R. P., Abraham, F. N., y Suárez, G. M. (2009).
Análisis comparativo de los costos totales energéticos, de explotación
y consumo de combustible del cultivo del arroz en las tecnologías en
seco y fangueo directo. Revista Ciencias Técnicas Agropecuarias,
18(3), 70–75.
Nourani, A., y Bencheikh, A. (2017). Energy Balance Analysis and
Mechanization Indexfor Greenhouse Vegetable Production in Southern
of Algeria. An Overview of Biskra province. INMATEH - Agricultural
Engineering, 19(4), 76–82.
National Standardization Ofce. (2003). Cuban Standard NC 34-38: 2003.
Forestry and Agricultural Machines. Methodology for Economic
Evaluation (2da. ed.).
National Standardization Ofce. (2003). Cuban Standard NC 34-47: 2003.
Foresty and Agricultural Machines. Metodology for Determination of
Testing Conditions.
Paneque, P., y Soto, D. (2007). Costo energético de las labores de preparación de
suelo en Cuba. Revista Ciencias Técnicas Agropecuarias, 16(4), 17–22.
Paneque, R. P., Fernández, H. C., y Donizette de Oliveria, A. (2002).
Comparación de cuatro sistemas de labranza/siembra en relación con
su costo energético. Revistas Ciencias Técnicas Agropecuarias, 11(2),
1–7.
Paneque, R. P., y Sánchez, R. Y. (2006). Costo energético de la cosecha
mecanizada del arroz en Cuba. Revista Ciencias Técnicas
Agropecuarias, 15(1), 19–23.
Pushpitha, N. P. G., Weerasinghe, K. D. N., y Maier, D. (2018). Modication
of a two-wheel tractor as a versatile power machine for post disaster
recovery programs. Procedia Engineering, 212(2017), 614–621.
https://doi.org/10.1016/j.proeng.2018.01.079
Quimís-Guerrido, B., Franco-Plaza, F., Loor-Guerrero, C., Sempertegui-Campi,
V., y Quimís-Pin, J. (2020). Evaluación tecnológica explotativa del
motocultor Dongfeng DF 151L en preparación de suelo para sembrar
maíz. La Técnica: Revista de Las Agrociencias. ISSN 2477-8982,
Agricultura y Silvicultura. Edición Especial (Octubre), 47–64. https://
revistas.utm.edu.ec/index.php/latecnica/article/view/2216
Quimis-Guerrido, B., y Shkiliova, L. (2019). Technological and Operation
Evaluation of the YTO DF-15L Rototiller in Soil Preparation for
Watermelon. Revista Ciencias Técnicas Agropecuarias, 28(2),
1–10. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2071-
00542019000200007&lng=es&nrm=iso&tlng=es
Ramos, G. R., y Lora, C. D. (2013). Determinación de parámetros de
explotación y económicos en el corte de forraje con diferentes máquinas
cosechadoras. Revista Ingeniería Agrícola, 3(2), 31–38. http://dima.
chapingo.mx/revista/Vol_3_n_2_2013/pdf/IA05213.pdf
Rangapara, D. K., Dabhi, K. L., y Makwana, A. D. (2017). Comparative
Performance of Tractor Drawn Implements Tillage System With
Rotavator Tillage System. International Journal of Agriculture
Sciences, 9(5), 3743–3748.
Rasool, S., y Raheman, H. (2015). Suitability of rubber track as traction device
for power tillers. Journal of Terramechanics, 66, 41–47. https://doi.
org/10.1016/j.jterra.2015.08.003
Reina, L., y Hetz, E. (2010). Gestión integral de un sistema mecanizado para
una nca del Valle del Río Portoviejo, Manabí, Ecuador. La Técnica:
Revista de Las Agrociencias. ISSN 2477-8982, 2, 33. https://doi.
org/10.33936/la_tecnica.v0i2.642
Shkiliova, L., Cevallos, M. R., y Iglesias, C. C. (2019). Agricultural
mechanization in Ecuador. AMA, Agricultural Mechanization in Asia,
Africa and Latin America, 50(2), 72–77.
Terneus, P. C., y Viteri, S. O. (2020). Analysis of agro-food transport in Ecuador
faced with a possible reduction in the subsidy of diesel. Energy Policy,
144(January), 2–12. https://doi.org/10.1016/j.enpol.2020.111713