1
Suárez Acosta, et al
_____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
2
Velocities Interpolation by Two-Dimensional Affine Transformation
____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
Two-Dimensional Affine Transformation (AT2D) for
Geodetic Velocity Interpolation utilizing SIRGAS-CON
Weekly Solutions
Hermógenes David Suárez Acosta1
Ileanis del Carmen Arenas Bermúdez1 , Nilbeny Nibraska Cano Finol1
Paola Chiquinquirá Marcano Márquez1 , Alisleidy Paola Martínez Martínez1
1 Laboratorio de Geodesia Física y Satelital Dr. Melvin Hoyer, Departamento de Geodesia
Superior. Escuela de Ingeniería Geodésica. Universidad del Zulia. Av. 16 (Guajira) con calle 67
(Cecilio Acosta) LUZ Núcleo Técnico, Facultad de Ingeniería, Edificio de Profesores Dr. Antonio
Borjas Romero, piso 3, Maracaibo, Estado Zulia, Venezuela.
Autor de correspondencia: hsuarez@fing.luz.edu.ve / suarezhh@gmail.com
https://doi.org/10.22209/rt.v48a08
Recepción: 02 abril 2025 | Aceptación: 23 octubre 2025 | Publicación: 31 octubre 2025.
Abstract
Geodetic velocity models are critical for transforming coordinates from a reference epoch to an observation
epoch. However, developing these models is often time-consuming, requiring frequent updates to maintain validity.
To address the issue of its validity over time, this study examines the use of the Two-Dimensional Affine
Transformation (AT2D) method for interpolating velocities at GNSS stations in South America. The AT2D relies on
triangulation from surrounding SIRGAS-CON stations, which have well-known velocities, over a specific time
interval. The resulting velocities from the AT2D method and VEMOS models were compared against their well-
known reference velocities derived from SIRGAS-CON solutions, allowing the calculation of velocity residuals for
quality assessment at fifty stations. In 82% of the residual comparisons, AT2D exhibited lower RMSE (±1.4 mm/year)
than VEMOS models (±3.6 mm/year). The results show that the AT2D method effectively reproduces SIRGAS-CON
velocities when GNSS stations are situated within the same tectonic plate. The primary advantage of the AT2D method
is its rapid access and temporal flexibility, allowing for adjustments when abrupt jumps or data discontinuities occur.
Therefore, the AT2D method proves efficient and accurate for calculating updated velocities in local or regional
contexts relevant to surveying and geodetic engineering.
Keywords: Affine Transformation; Geodetic Velocities; GNSS; Interpolation; SIRGAS-CON.
Transformación Afín Bidimensional (AT2D) para
Interpolación de Velocidades Geodésicas utilizando
Soluciones Semanales SIRGAS-CON
Resumen
Los modelos de velocidades geodésicas son cruciales para la transformación de coordenadas de una época de
referencia a una época de observación. Su desarrollo suele requerir mucho tiempo y actualizaciones frecuentes para
mantener su validez. Para abordar el problema de su validez, este estudio examina el uso de la Transformación Afín
Bidimensional (AT2D) para interpolar velocidades en estaciones GNSS en Sudamérica. La AT2D se basa en una
3
Suárez Acosta, et al
_____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
triangulación desde estaciones SIRGAS-CON circundantes, con velocidades conocidas, durante un intervalo de
tiempo específico. Las velocidades resultantes del método AT2D y de los modelos VEMOS, sobre cincuenta
estaciones, se compararon contra sus velocidades conocidas, lo que permitió el cálculo de residuos para la evaluación
de la calidad. En el 82% de las comparaciones, la AT2D exhibió un RMSE menor (±1,4 mm/año) que los modelos
VEMOS (±3,6 mm/año). Los resultados muestran que el método AT2D reproduce eficazmente las velocidades
SIRGAS-CON cuando las estaciones se ubican en la misma placa tectónica. La AT2D ofrece una flexibilidad temporal
que permite realizar ajustes ante saltos abruptos o discontinuidades en los datos GNSS. Además, la AT2D resulta
eficiente y precisa para calcular velocidades actualizadas en contextos locales o regionales relevantes para la
topografía y la ingeniería geodésica.
Palabras clave: Interpolación; GNSS; SIRGAS-CON; Transformación Afín; Velocidades Geodésicas.
Transformação Afin Bidimensional (AT2D) para
Interpolação de Velocidades Geodésicas utilizando Soluções
Semanais SIRGAS-CON
Resumo
Os modelos de velocidade geodésica são cruciais para a transformação de coordenadas de uma época de
referência para uma época de observação. Seu desenvolvimento costuma ser demorado e requer atualizações
frequentes para manter sua validade. Para abordar a questão da validade, este estudo examina o uso da Transformação
Afim Bidimensional (AT2D) para interpolar velocidades em estações GNSS na América do Sul. A AT2D baseia-se
na triangulação a partir de estações SIRGAS-CON vizinhas com velocidades conhecidas em um intervalo de tempo
específico. As velocidades resultantes do método AT2D e dos modelos VEMOS, em cinquenta estações, foram
comparadas com suas velocidades conhecidas, permitindo cálculos residuais para avaliação da qualidade. Em 82%
das comparações, a AT2D apresentou um RMSE menor (±1,4 mm/ano) do que os modelos VEMOS (±3,6 mm/ano).
Os resultados mostram que o método AT2D reproduz efetivamente as velocidades SIRGAS-CON quando as estações
estão localizadas na mesma placa tectônica. O AT2D oferece flexibilidade temporal que permite ajustes em resposta
a saltos abruptos ou descontinuidades nos dados GNSS. Além disso, o AT2D é eficiente e preciso para calcular
velocidades atualizadas em contextos locais ou regionais relevantes para topografia e engenharia geodésica.
Palavras-chave: Interpolação; GNSS; SIRGAS-CON; Transformação Afim; Velocidades Geodésicas.
Introduction
Geodetic velocities refer to the rate of change of a point's position on the Earth's surface over time, expressed in
a terrestrial reference frame and derived from continuous or episodic geodetic observations. Researchers typically
derive geodetic velocities through various geodetic techniques, including Very Long Baseline Interferometry (VLBI),
Global Navigation Satellite Systems (GNSS), Interferometric Synthetic Aperture Radar (InSAR), Light Detection and
Ranging (LiDAR), Photogrammetry, leveling, tiltmeters, and total station measurements (Yan et al., 2022).
Geodetic velocities find broad applications in various geophysical and engineering contexts, including
monitoring of plate tectonics, deformation processes, strain accumulation (and the prediction of potential seismic
activity), structural stability analysis, sea-level studies (accounting for land movement in tide gauge analysis), glacier
and ice sheet motion tracking, and regional/global deformation modeling. Furthermore, they are essential for updating
coordinates in dynamic reference frames such as the International Terrestrial Reference Frame (Altamimi et al., 2023).
Within the framework of the Geodetic Reference System for the Americas (SIRGAS) (www.sirgas.ipgh.org)
(Hoyer et al., 1998), the weekly coordinates from SIRGAS continuously operating network (SIRGAS-CON) provide
a robust dataset with precisely known positions (referred to a specific reference epoch) and their changes over time
(station velocities) (Sánchez, 2023; SIRGAS Analysis Centre at DGFI-TUM, 2024a). Based on SIRGAS reference
frame solutions, a regularly updated velocity model for SIRGAS called VEMOS (Drewes et al., 2024) has been
developed since 2003 (Drewes and Heidbach, 2005). However, generating velocity models takes considerable time,
and ongoing geodynamic processes inherently limit their validity.
4
Velocities Interpolation by Two-Dimensional Affine Transformation
____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
In contrast to continental models, such as VEMOS, this study seeks to develop an alternative method to calculate
updated geodetic velocities, explicitly designed for a local or regional scale applications, including surveying and
geodetic engineering projects. The proposed method utilizes SIRGAS-CON station coordinates to calculate velocities
over a defined period, based on the principle that velocities are determined as the rate of coordinate change between
two epochs within a consistent ITRF. This linear, uniform displacement model implicitly assumes the absence of
significant trajectory anomalies such as abrupt jumps, antenna changes, receiver changes, or data discontinuities
(Drewes, 2020).
To evaluate velocity interpolation, this study examines the Two-Dimensional Affine Transformation (AT2D)
method (Ghilani, 2018), which is analogous to the Local TIN Interpolation (LTI) method employed in Digital Terrain
Models (DTM) (Suárez et al., 2024). AT2D, widely used in geodesy, cartography, and geospatial analysis, enables
point transformations on a two-dimensional plane, demonstrating effectiveness in both elevation and horizontal
velocity field interpolation (Li et al., 2005).
In this research, data from 174 SIRGAS-CON stations distributed throughout South America were analyzed to
estimate geodetic velocities in three temporal intervals between 2014.011 and 2024.011. Subsequently using the
AT2D method to interpolate velocities at 50 target points (Pi) within triangular areas defined by three surrounding
SIRGAS-CON stations (Sr) (Table 1) (Figure 1).
The results provide insights into the accuracy, constraints, and applicability of the AT2D method as an alternative
for geodetic velocity estimation in a local context (range < 1,000 km), with a dense GNSS network, such as SIRGAS-
CON, particularly in situations where a velocity model is not accessible.
Figure 1. Map with selected SIRGAS-CON stations.
5
Suárez Acosta, et al
_____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
Table 1. Triangulations formed by selected SIRGAS-CON stations (Pi and Sr).
Period
Pi
Sr
Pi
Sr
Pi
Pi
Sr
Pi
Sr
2014.011-2017.011
AMCO
←AMTE
BLPZ
MD01
GOGY
IGM1
←UNRO
MABB
MABA
←POVE
URUS
←UYMO
CRAT
←CRUZ
AREQ
←AZUL
TOGU
MABS
MABA
MTSR
←MTCO
RIO2
RNMO
←CEEU
ROGM
RIOB
CRAT
CUIB
RNNA
ROJI
TOGU
ROCD
CRAT
MD01
ROSA
←PPTE
SCLA
SCCH
UFPR
UYDU
UYRI
VICO
←MGBH
←PRCV
SCFL
UYRO
←RJCG
←MSDR
POAL
UYMO
←RIOD
2017.011-2022.011
BAIT
PEPE
BRAZ
←GOUR
CESB
CORD
←CATA
CUIB
MTJI
SAVO
←MGMC
←UNRO
GOUR
BABJ
←GOGY
←SL01
CORU
MABA
SALU
MGBH
MGMC
PEAF
PICR
TOPL
PRGU
←PRMA
←TOPL
VICO
PEPE
←UFPR
←AMUA
MGRP
BABJ
←SCCH
SMAR
SCCH
SPJA
←SPFR
UYPT
UYSJ
←UYFS
UYTT
UYCL
RSPE
←SPC1
←UYMO
UYLP
RSAL
←SPLI
←UYCO
UYDU
2022.011-2024.011
AGGO
IGM1
ALBE
SDTA
APMA
APS1
CYNE
BAVC
BABJ
LPGS
GARA
BELE
BAIL
SMDM
APTO
APLJ
MGTO
BOGT
GARA
BOSC
CN19
CESB
CJ01
SM01
CUEC
ALEC
ABPD
SDTA
AN02
GZEC
ABCC
BQLA
LB01
SIEC
GQEC
BHEC
HC03
SM01
MTLA
PBCG
RNNA
PU02
CS01
DPEC
HV01
PERC
BLPZ
SEEC
AN02
PEAF
IACR
SMAR
RSCL
SPAR
SPFE
UFPR
USCL
SANT
UYSJ
UYFS
POAL
SPLI
MGUE
UYMO
RSAL
SPDR
ANTC
UYCO
6
Velocities Interpolation by Two-Dimensional Affine Transformation
____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
Data and methodology
This study utilized three distinct data sources and employed three specialized programs for data processing:
The authors extracted the reference frame, epoch, latitude, longitude, and ellipsoidal height data from SIRGAS
weekly ellipsoidal position files (*.PLH), for the period 2014.011 to 2024.011 (Sánchez et al., 2022).
SIRGAS weekly position differences (*.NEU) files, which include the reference frame, epoch in decimal years
and position differences (∆E, ∆N), were also extracted, for the period 2014.011 to 2024.011 (Sánchez et al., 2022).
All SIRGAS weekly products presented and discussed in this paper are publicly available at the following website
(SIRGAS Analysis Centre at DGFI-TUM, 2024b): https://www.sirgas.org/en/stations/station-list/.
*.TXT files of the VEMOS2017 (Drewes and Sánchez, 2020) and VEMOS2022 (Drewes et al., 2024) velocity
models. VEMOS2017 was derived from pointwise station velocities inferred at 515 geodetic sites from January 1,
2014, to January 28, 2017, using a geodetic least-squares collocation approach with empirically determined covariance
functions. The average uncertainty of VEMOS2017 is ±1.0 mm/yr in the north-south direction and ±1.7 mm/yr in the
east-west direction. VEMOS2022 was computed using the same methods as the previous VEMOS2017, covers the
period from February 1, 2017, to April 30, 2022, and its average uncertainty is assessed to be ±0.8 mm/yr in the north-
south direction and ±1.3 mm/yr in the east-west direction (Sánchez et al., 2022). All VEMOS models presented and
discussed in this paper are publicly available at the following website (SIRGAS Analysis Centre at DGFI-TUM,
2024c): https://www.sirgas.org/en/velocity-model.
Velocities interpolation programs SGC_VEMOS2017_Interp.exe and SGC_VEMOS2022_Interp.exe (Suárez,
2023) based on bilinear models from Python's NumPy library (Harris et al., 2020). Velocities interpolation program
using the Two-Dimensional Affine Transformation SGC_SIRGAS-AT2D_Interp.exe (Suárez, 2023) based on
Python's NumPy library (Harris et al., 2020).
This research examines the Two-Dimensional Affine Transformation (AT2D) method (Ghilani, 2018), to
interpolate the horizontal velocity components of any point to be interpolated (Pi) within the area of a triangle formed
by three surrounding SIRGAS-CON reference stations (Sr) (Figure 2). The geodetic coordinates (Xr, Yr), and
velocities (VEr, VNr) are known for a defined time interval (tf - ti), within the same ITRF. Figure 2 presents an
example of triangulation involving three surrounding SIRGAS-CON reference stationsSr, CUIB, ROJI, and
SCRZwith the interpolation target station (Pi), MTLA, positioned at the center. The distances between these stations
range from 350 to 560 km.
Figure 2. Example of triangulation: (Sr: CUIB, ROJI, SCRZ) and (Pi: MTLA).
7
Suárez Acosta, et al
_____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
In this study, the authors selected SIRGAS-CON stations based on three main criteria: geodynamics, geometrics,
and data availability. The authors located all stations (Pi and Sr) on the same tectonic plate to ensure consistent velocity
interpolation. Furthermore, for maximum accuracy, the configuration of the selected SIRGAS-CON reference stations
(Sr) was as close as possible to the Pi station, with good symmetry and proportionality. The selected stations should
form triangles having a ratio between the perimeter and the square root of the enclosed area [P/√A 4.5590] (Feder,
1988). This criterion improves the geometric stability of the transformation and reduces potential interpolation errors.
Finally, the chosen reference stations (Sr) must not exhibit data jumps or discontinuities during the time interval (tf -
ti) of interest.
With the reference stations selected, the authors proceed with their velocity’s calculation. It is important to
highlight that the authors did not derive velocities through a regression model of the coordinate time series. Instead,
the authors calculated the SIRGAS-CON stations' velocities over a defined period corresponding to the rate of change
of their coordinates (position differences) between two observation epochs within the same ITRF (Drewes, 2020). The
calculation of horizontal velocities (VEr, VNr) of the SIRGAS-CON reference stations (Sr) was based on weekly
position difference files (*.NEU), using the coordinate changes (∆Er, ∆Nr) between two observation epochs (tf and
ti), representing discrete positional shifts over a defined time interval. The governing equations are shown below (Eq.
1, 2).
󰇛󰇜
󰇛󰇜 (1)
󰇛󰇜
󰇛󰇜 (2)
The authors interpolated the velocities at the point of interest (Pi) by using the Two-Dimensional Affine
Transformation (AT2D), which applies two translations of the origin, and a rotation about the origin, plus a small
nonorthogonality correction between the X and Y axes (Ghilani, 2018). AT2D utilizes six parameters (a, b, c, d, e, f),
including two translations (c, f), two independent scales, one rotation, and one distortion, allowing for modeling not
only rotations and translations but also stretching and distortions in two different directions. X and Y are the well-
known coordinates (longitude and latitude) extracted from *.PLH files. Equations (3) and (4) show the observation
equations of the AT2D model.
  (3)
  (4)
When the number of equations equals the number of unknowns, and the equations are linearly independent,
meaning there is no redundancy among them, and the coefficient matrix is invertible, it ensures the existence of a
unique solution (Lay et al., 2016). In this case, a determined solution of the linear equations is possible with a minimum
of three reference stations (Sr). The matrix notation of the observation equation system AX = L is shown below (Eq:
5):

(5)
Once the authors explicitly solve the observation equation system AX = L by calculating X=A1L using matrix
inversion, and all its unknown parameters (a, b, c, d, e, f) are determined. The authors interpolate the velocities at the
point of interest (Pi) with known coordinates (Xi, Yi) using equations (6) and (7).
8
Velocities Interpolation by Two-Dimensional Affine Transformation
____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
 (6)
(7)
For this study, the authors selected 50 triangles (Table 1), each with their respective interior point to be
interpolated (Pi) and its three surrounding stations (Sr), all belonging to the SIRGAS-CON network, for a total of 200
stations (174 unique stations) (Figure 1). The authors applied the AT2D method to interpolate the velocities at the 50
stations (Pi), which are also well-known from SIRGAS-CON weekly solution, allowing the calculation of their
velocity residuals (Eq. 8, 9) and their respective Root Mean Square Error (RMSE) for each velocity component (Eq.
10, 11).
󰇛󰇜 󰇛󰇜 (8)
 󰇛󰇜 󰇛󰇜 (9)
 󰇛󰇜
 (10)
 󰇛󰇜
 (11)
Results and Discussion
A comparative analysis was conducted on three interpolation techniques AT2D, VEMOS2017, and
VEMOS2022 to evaluate their effectiveness in estimating velocity components. The AT2D method was the sole
technique developed within the scope of this study. VEMOS models were incorporated as external data products for
comparative purposes. The authors benchmarked the residuals from each method against the established SIRGAS-
CON velocity values. The authors performed the first comparative analysis of velocities for the period 2014.011
2017.011, simultaneous with VEMOS2017, using fifteen triangular configurations formed by SIRGAS-CON stations
[15(Pi) + 45(Sr)]. In this analysis, the distance between the Pi and its corresponding Sr varies from 120 to 870 km
(Figure 3).
From Table 2, the AT2D method exhibited the lowest RMSE (VN: ±1.1 mm/yr, VE: ±1.4 mm/yr) among three
velocity interpolation methods (AT2D, VEMOS2017, VEMOS2022) compared against reference SIRGAS-CON
velocities. In addition, AT2D's direction (sign) of the interpolated velocities matches the SIRGAS-CON velocities for
all fifteen stations. VEMOS17 failed at station BLPZ, and VEMOS2022 failed at stations BLPZ, RIO2, and RNMO.
An additional external review of the SIRGAS2022 positions and velocities files (*.CRD) reported the following
velocities: [BLPZ, VN: 13.67, VE: 1.66 mm/year]; [RIO2, VN: 11.71, VE: 4.42 mm/year]; [RNMO, VN: 15.8, VE: -
4.08 mm/year]. These velocities are more consistent with those in AT2D, except for BLPZ. All three stations share
common discontinuity issues: BLPZ was affected by the Iquique Quake on 4/1/2014; RIO2 experienced an antenna
switch on 2/20/2020, and a receiver upgrade on 6/30/2020; and RNMO experienced an antenna switch on 3/28/2017.
9
Suárez Acosta, et al
_____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
Figure 3. SIRGAS-CON stations [15(Pi) + 45(Sr)], period 2014.0112017.011.
Table 2. Interpolated velocities and residuals [mm/yr] (period 2014.011-2017.011).
Units:mm/yr
SIRGAS-CON
AT2D
Res.
VEMOS2017
Res.
VEMOS2022
Res.
Pi
VNi
VEi
VNi
VEi
δVNi
δVEi
VNi
VEi
δVNi
δVEi
VNi
VEi
δVNi
δVEi
AMCO
11.31
-2.31
11.29
-3.18
-0.02
-0.87
11.86
-2.89
0.55
-0.58
13.30
-3.93
0.54
0.47
BLPZ
8.47
-2.2
8.23
-2.44
-0.24
-0.24
11.80
2.94
3.33
5.14
12.86
2.33
4.39
4.53
GOGY
11.88
-4.39
11.26
-4.83
-0.62
-0.44
12.59
-2.59
0.71
1.8
11.48
-2.62
-0.3
1.48
IGM1
11.78
-4.1
11.9
-3.43
0.12
0.67
13.10
-1.93
1.32
2.17
12.73
-3.68
0.85
0.71
MABB
12.76
-4.4
12.62
-4.4
-0.14
0
13.04
-2.87
0.28
1.53
12.15
-2.94
0.83
-0.08
MABS
12.07
-6.28
12.85
-3.27
0.78
3.01
12.55
-3.31
0.48
2.97
12.26
-3.39
0.95
-1.08
MTSR
12.71
-4.17
11.2
-2.91
-1.51
1.26
12.82
-2.75
0.11
1.42
11.56
-2.02
0.98
-0.18
RIO2
11.28
4.73
11.63
6.24
0.35
1.51
14.43
6.71
3.15
1.98
11.88
-3.16
0.3
1.22
RNMO
13.11
-5.72
11.47
-4.41
-1.64
1.31
14.10
-3.67
0.99
2.05
12.03
5.38
0.75
0.65
ROGM
10.58
-1.84
11.61
-2.17
1.03
-0.33
11.66
-1.27
1.08
0.57
13.40
-3.74
0.69
0.43
ROSA
11.58
-4.38
12.22
-3.41
0.64
0.97
12.45
-1.82
0.87
2.56
14.02
-4.55
0.91
1.17
SCLA
11.32
-2.86
11.9
-3.4
0.58
-0.54
13.62
-1.81
2.3
1.05
11.72
-2.68
2.07
-1.1
UFPR
13.21
-3.27
10.91
-3.38
-2.3
-0.11
13.37
-2.33
0.16
0.94
12.61
-3.36
-0.6
-0.09
UYDU
9.65
-1.58
11.45
-2.7
1.8
-1.12
13.07
-1.33
3.42
0.25
12.42
-4.77
1.91
-0.47
VICO
10.51
-4.3
10.68
-7.4
0.17
-3.1
12.65
-3.33
2.14
0.97
13.20
-4.30
1.13
1.98
RMSE(mm/yr):
±1.1
±1.4
RMSE(mm/yr):
±1.8
±2.1
RMSE(mm/yr):
±1.5
±1.5
10
Velocities Interpolation by Two-Dimensional Affine Transformation
____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
A second comparative analysis was conducted for the period 2017.0112022.011, concurrent with VEMOS2022,
using a different data set of fifteen pre-defined triangular configurations of SIRGAS-CON stations [15(Pi) + 45(Sr)].
The distance between the Pi and its corresponding Sr varies from 66 to 1,235 km (Figure 4).
Figure 4. SIRGAS-CON stations [15(Pi) + 45(Sr)], period 2017.011-2022.011.
Table 3. Interpolated velocities and residuals [mm/yr] (period 2017.011-2022.011).
Units:mm/yr
SIRGAS-
CON
AT2D
Res.
VEMOS2017
Res.
VEMOS2022
Res.
Pi
VNi
VEi
VNi
VEi
δVNi
δVEi
VNi
VEi
δVNi
δVEi
VNi
VEi
δVNi
δVEi
BAIT
11.77
-4.66
12.71
-4.84
0.94
-0.18
12.89
-3.29
1.12
1.37
11.52
-2.83
0.42
-0.06
BRAZ
12.41
-4.79
12.42
-3.87
0.01
0.92
12.69
-2.65
0.28
2.14
11.98
-2.61
0.04
0.63
CESB
12.21
-5.55
10.61
-5.12
-1.6
0.43
14.02
-3.84
1.81
1.71
10.10
-3.03
0.08
-0.96
CORD
10.02
-2.07
9.85
-1.87
-0.17
0.2
11.71
-2.74
1.69
-0.67
12.59
-3.61
0.42
0.17
CUIB
10.58
-3.27
11.99
-4.11
1.41
-0.84
12.27
-2.5
1.69
0.77
11.96
-2.74
0.5
0.2
MABA
12.19
-6.08
11.11
-5.17
-1.08
0.91
13.12
-3.23
0.93
2.85
13.10
-4.06
0.49
1.26
MGBH
11.29
-3.01
12.73
-3.67
1.44
-0.66
12.87
-3.42
1.58
-0.41
11.59
-2.63
0.04
0.21
PEAF
12.87
-5.48
12.28
-5.22
-0.59
0.26
13.1
-3.8
0.23
1.68
13.04
-5.28
0.17
0.2
PICR
12.61
-5.32
12.25
-4.92
-0.36
0.4
12.94
-2.26
0.33
3.06
12.79
-3.80
0.38
0.99
PRGU
12.03
-3.21
12.19
-4.6
0.16
-1.39
14.09
-1.79
2.06
1.42
12.71
-4.16
0.94
0.5
SMAR
11.94
-3.24
11.93
-3.18
-0.01
0.06
13.55
-1.9
1.61
1.34
12.74
-2.83
0.71
0.38
SPJA
12.17
-3.78
12.44
-3.73
0.27
0.05
12.67
-2.44
0.5
1.34
13.01
-3.80
0.82
2.28
UYPT
11.1
-2.77
11.09
-2.75
-0.01
0.02
12.9
-1.42
1.8
1.35
12.69
-4.42
1.4
-1.41
UYSJ
11.55
-2.84
10.97
-2.74
-0.58
0.1
13.11
-1.62
1.56
1.22
12.70
-3.43
2.12
-0.16
UYTT
11.46
-2.94
11.43
-2.64
-0.03
0.3
13.15
-1.64
1.69
1.3
13.06
-4.56
0.85
0.99
RMSE(mm/yr):
±0.8
±0.6
RMSE(mm/yr):
±1.4
±1.7
RMSE(mm/yr):
±0.8
±0.9
11
Suárez Acosta, et al
_____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
From Table 3, the AT2D method showed the lowest RMSE in both velocity components: VN: ±0.8 mm/yr and
VE: ±0.6 mm/yr, while the highest RMSE was reported by the VEMOS2017 model. The interpolated velocities from
VEMOS2022 reported second-best results, which is expected because this model was originally computed using data
from the same period. In this case, the direction (sign) of the interpolated velocities for the three methods matches the
SIRGAS-CON velocities for all fifteen stations.
The third and last comparative analysis was done for the period 2022.011-2024.011 (non-concurrent with
VEMOS), using another data set of twenty pre-defined triangular configurations of SIRGAS-CON stations [20(Pi) +
60(Sr)]. The distance between the Pi and its corresponding Sr varies from 6 to 560 km (Figure 5).
Figure 5. SIRGAS-CON stations [20(Pi) + 60(Sr)], period 2022.011-2024.011.
From Table 4, the AT2D method reported the lowest RMSE in both velocity components: VN: ±0.9 mm/yr and
VE: ±0.7 mm/yr, while the highest RMSE was reported by the VEMOS2017 model. AT2D's and VEMOS2022's
direction (sign) of the interpolated velocities aligns with the SIRGAS-CON velocities for all twenty stations.
VEMOS17 failed at the CJ01 and CUEC stations. Both stations have similar discontinuity issues: the Navarro
Earthquake on 5/26/2019 impacted CJ01, and CUEC underwent four antenna switches between 2014 and 2020 and
was affected by three earthquakes, namely Quake Muisne/Pedernales on 4/16/2016, Quake Palora on 2/22/2019, and
Quake Navarro on 5/26/2019.
12
Velocities Interpolation by Two-Dimensional Affine Transformation
____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
Table 4. Interpolated velocities and residuals [mm/yr] (period 2022.011-2024.011).
Units:mm/yr
SIRGAS-
CON
AT2D
Res.
VEMOS2017
Res.
VEMOS2022
Res.
Pi
VNi
VEi
VNi
VEi
δVNi
δVEi
VNi
VEi
δVNi
δVEi
VNi
VEi
δVNi
δVEi
AGGO
9.03
-3.31
10.65
-2.54
1.62
0.77
13.15
-1.9
4.12
1.41
11.55
-2.43
2.52
0.88
ALBE
12.94
4.82
11.93
4.72
-1.01
-0.1
13.58
6.62
0.64
1.8
15.26
4.66
2.32
-0.16
APMA
11.33
-5.42
11.4
-5.21
0.07
0.21
12.23
-3
0.9
2.42
12.92
-4.51
1.59
0.91
APS1
11.66
-5.69
11.4
-5.19
-0.26
0.5
12.23
-2.99
0.57
2.7
12.91
-4.51
1.25
1.18
BAVC
10.42
-5.47
11.51
-5.91
1.09
-0.44
13
-3.11
2.58
2.36
12.76
-4.06
2.34
1.41
BOGT
11.57
0.81
11.56
0.49
-0.01
-0.32
13.57
2.45
2
1.64
14.75
0.00
3.18
-0.81
BOSC
14.02
6.15
12.78
7.09
-1.24
0.94
12.83
10.42
-1.19
4.27
15.13
8.49
1.11
2.34
CESB
11.51
-6.06
10.5
-5.9
-1.01
0.16
14.02
-3.84
2.51
2.22
13.06
-4.56
1.55
1.5
CJ01
5.17
-1
5.44
-1.97
0.27
-0.97
8.37
3.75
3.2
4.75
9.07
-0.96
3.9
0.04
CUEC
6.96
-0.5
6.86
-2.21
-0.1
-1.71
9.52
0.36
2.56
0.86
8.79
-0.66
1.83
-0.16
GQEC
6.78
2.47
7.58
1.51
0.8
-0.96
9.92
1.36
3.14
-1.11
9.91
2.77
3.13
0.3
HC03
9.99
2
7.5
2.27
-2.49
0.27
12.15
8.38
2.16
6.38
12.53
5.48
2.54
3.48
MTLA
10.43
-4.4
9.8
-4.18
-0.63
0.22
11.53
-2.13
1.1
2.27
12.14
-3.12
1.71
1.28
PBCG
11.64
-6.48
10.81
-5.89
-0.83
0.59
13.45
-4.11
1.81
2.37
13.18
-5.14
1.54
1.34
PU02
9.69
2.42
9.24
1.83
-0.45
-0.59
12.49
7.47
2.8
5.05
12.58
6.19
2.89
3.77
SMAR
11.89
-4.49
11.64
-4.61
-0.25
-0.12
13.55
-1.9
1.66
2.59
11.98
-2.61
0.09
1.88
SPAR
11.85
-4.93
11.27
-5.86
-0.58
-0.93
12.66
-2.18
0.81
2.75
12.57
-3.31
0.72
1.62
UFPR
11.71
-4.77
11.25
-4.87
-0.46
-0.1
13.37
-2.33
1.66
2.44
12.61
-3.36
0.9
1.41
USCL
12.75
12.35
13.48
13.86
0.73
1.51
18.48
3.06
5.73
-9.29
16.70
13.86
3.95
1.51
UYSJ
11.32
-3.13
11.33
-3.27
0.01
-0.14
13.11
-1.62
1.79
1.51
11.59
-2.63
0.27
0.5
RMSE(mm/yr):
±0.9
±0.7
RMSE(mm/yr):
±2.5
±3.6
RMSE(mm/yr):
±2.2
±1.6
Across all tests, the AT2D method consistently exhibits the lowest RMSE values compared to VEMOS2017 and
VEMOS2022. Out of fifty comparisons (Tables 24), forty-one stations (82%) show lower RMSE values with AT2D.
The maximum RMSE values observed were ±1.4 mm/year for AT2D, ±3.6 mm/year for VEMOS2017, and ±2.2
mm/year for VEMOS2022. Conversely, the minimum RMSE values were ±0.6 mm/year, ±1.4 mm/year, and ±0.8
mm/year, respectively. The AT2D method achieves accuracy better than ±1 mm/year with SIRGAS-CON data
collected after 2017 due to fewer discontinuities compared to earlier datasets.
The precision of VEMOS models decreases notably when interpolations occur outside the time intervals for
which the models were originally developed, limiting their temporal applicability. In contrast, the AT2D method offers
considerable temporal flexibility, allowing users to adjust, expand, or shift time intervals, which is particularly
advantageous when handling discontinuities, especially in seismic active regions, since the AT2D method is based on
SIRGAS weekly coordinate solutions (Sánchez and Drewes, 2020).
Spatial separation between interpolated stations (Pi) and reference stations (Sr) does not significantly influence
AT2D performance. However, suboptimal geometric arrangements (triangles with perimeter-to-area ratios [P/√A]
below 4.5590) or data discontinuities can significantly reduce AT2D efficacy. Furthermore, the AT2D method should
not be used for interpolation beyond triangular regions, such as coastal zones, nor in areas close to active tectonic
plate boundaries or regions experiencing recent seismic activity.
The interpolation of geodetic velocities using the AT2D method is dependent on all participating stations (Pi and
Sr) being located on the same tectonic plate and same ITRF to ensure consistency in velocity estimates.
In scenarios involving geodynamic processes, such as co-seismic or post-seismic displacements, more robust
methods like Trajectory Models (TM) (Bevis and Brown, 2014) or Least Squares Collocation (LSC) (Gómez et al.,
2016) are recommended.
13
Suárez Acosta, et al
_____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
Conclusions
The AT2D is an effective technique for calculating updated geodetic velocities, particularly in local or
regional surveying and geodetic engineering applications, in a relatively rapid way. AT2D does not compete with
VEMOS models on a large or continental scale.
The AT2D method reliably and effectively replicates SIRGAS-CON velocities and displacements, especially
when GNSS stations are situated within the stable interior of a tectonic plate. On the contrary, this method is unsuitable
for stations located near active plate boundaries or within regions that have recently been affected by seismic activity.
The AT2D approach is recommended for regions equipped with a robust and dense GNSS continuous
observation network, especially when precise velocity models are not available. Nevertheless, it is not appropriate for
areas with sparse GNSS networks, such as Chile, Paraguay, and Venezuela.
The AT2D method exceeds conventional grid-based models in its ability to facilitate users in selecting the
most appropriate nearby stations and defining a suitable, and notably, current time interval. The temporal flexibility
inherent in the AT2D method permits the adjustment of time intervals, which proves advantageous for managing
GNSS data characterized by sudden jumps or discontinuities.
While this study utilized three surrounding reference stations (Sr) for velocity interpolation, the AT2D
method inherently allows incorporation of additional stations. Further research is recommended to explore whether
incorporating more stations enhances interpolation robustness.
Acknowledgements
The authors want to thank all the people, organizations, and institutions that collaborated directly and indirectly
in the realization of this research: LGFS-MH, SIGGMA, SIRGAS Analysis Centre at DGFI-TUM, and all the
collaborators' students of the LGFS-MH. References
Altamimi, Z., Rebischung, P., Collilieux, X., Métivier, L., Chanard, K. (2023): ITRF2020: an augmented reference
frame refining the modeling of nonlinear station motions. Journal of Geodesy. doi:10.1007/s00190-023-01738-w.
Bevis, M., Brown, A. (2014). Trajectory models and reference frames for crustal motion geodesy. Journal of Geodesy.
Volume 88, pages 283311. doi: 10.1007/s00190-013-0685-5.
Drewes, H., Heidbach, O. (2005). Deformation of the South American crust estimated from finite element and
collocation methods', in Sansò, F. (ed.). A Window on the Future of Geodesy. IAG Symposia, vol. 128, pp. 544549.
Springer, Berlin, Heidelberg. doi: 10.1007/3-540-27432-4_92.
Drewes, H. (2020). Modelar el movimiento de la superficie terrestre. Velocidades continuas y coordenadas por
etapas. Technische Universität München (TUM), International Association of Geodesy (IAG), Sistema de Referencia
Geodésico para las Americas (SIRGAS). Webinar SIRGAS, 28 August 2020. Available at:
www.sirgas.ipgh.org/docs/Boletines/2020_Drewes_Webinar_VEMOS.pdf.
Drewes, H., Sánchez, L. (2020). Velocity model for SIRGAS 2017: VEMOS2017. PANGAEA. Technische Universität
München, Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), IGS RNAAC SIRGAS. [Online]. doi:
10.1594/PANGAEA.912350.
Drewes, H., Seitz, M., Sánchez, L. (2024). Realisation of the Non-Rotating Terrestrial Reference Frame by an Actual
Plate Kinematic and Crustal Deformation Model (APKIM2020). International Association of Geodesy Symposia.
Springer, Berlin, Heidelberg. doi:10.1007/1345_2024_276.
Feder, J. (1988). The Perimeter-Area Relation. Fractals: Physics of Solids and Liquids. Springer, Boston, MA.
doi:10.1007/978-1-4899-2124-6_12.
14
Velocities Interpolation by Two-Dimensional Affine Transformation
____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
Ghilani, C. (2018). Adjustment Computations: Spatial Data Analysis. 6th edn. John Wiley & Sons, Inc. Hoboken,
New Jersey.
Gómez, D., Piñón, D., Smalley, R., Bevis, M., Cimbaro, S., Lenzano, L., Barón, J. (2016). Reference frame access
under the effects of great earthquakes: a least squares collocation approach for non-secular post-seismic evolution.
Journal of Geodesy, Volume 90, Issue 3, pp. 263-273. DOI:10.1007/s00190-015-0871-8.
Harris, C., Millman, K., van der Walt, S., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg,
S., Smith, N., Kern, R., Picus, M., Hoyer, S., Kerkwijk, M., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M.,
Peterson, P., Oliphant, T. (2020). Array programming with NumPy. Nature 585(7825), pp. 357362.
doi:10.1038/s41586-020-2649-2.
Hoyer, M., Arciniegas, S., Pereira, K., Fagard, H., Maturana, R., Torchetti, R., Drewes, H., Kumar, M., Seeber, G.
(1998). The Definition and Realization of the Reference System in the SIRGAS Project', in Brunner, F.K. (ed.).
Advances in Positioning and Reference Frames. International Association of Geodesy Symposia, vol. 118. Springer,
Berlin, Heidelberg.
Lay, D., Lay, S., McDonald, J. (2016). Linear Algebra and Its Applications. 5th edn. Pearson.
Li, Z., Zhu, C., Gold, C., Wu, H., Fritsch, D. (2005). Digital Terrain Modeling: Principles and Methodology. CRC
Press.
Sánchez, L. (2023). SIRGAS Regional Network Associate Analysis Centre, Technical Report 2022. IGS Technical
Report 2022. doi:10.48350/179297.
Sánchez, L. Drewes, H. (2020). Geodetic monitoring of the variable surface deformation in Latin America.
International Association of Geodesy Symposia Series, vol. 152. Springer, Cham. doi: 10.1007/1345_2020_91
Sánchez, L., Drewes, H., Kehm, A., Seitz, M. (2022). SIRGAS reference frame analysis at DGFI-TUM. Journal of
Geodetic Science, 12(1), pp. 92119. doi:0.1515/jogs-2022-0138.
SIRGAS Analysis Centre at DGFI-TUM. (2024a). SIRGAS continuously operating network. Available at:
www.sirgas.org/en/sirgas-realizations/sirgas-con-network/.
SIRGAS Analysis Centre at DGFI-TUM. (2024b). SIRGAS continuously operating stations. Available at:
www.sirgas.org/en/stations/station-list/.
SIRGAS Analysis Centre at DGFI-TUM. (2024c). VEMOS: Velocity model for SIRGAS. Available at:
www.sirgas.org/en/velocity-model/.
Suárez, H. (2023). SIGGMA GEODETIC CALCULATOR SGC. Sociedad de Ingenieros Geodestas, Geomáticos y
Agrimensores de Venezuela SIGGMA. Available at: www.siggma.xyz/sgc/.
Suárez, H., Arenas, I., Cano, N., Marcano, P., Diaz, M., Martínez, A. (2024). Local TIN Interpolation (LTI) for the
calculation of horizontal velocity components, based on weekly time series from SIRGAS-CON stations. Sistema de
Referencia Geodésico para las Américas (SIRGAS). Simposio SIRGAS 2024, Bogotá, Colombia, 18-21 de noviembre
de 2024.
Yan, Y., Li, M., Dai, L., Guo, J., Dai, H., Tang, W. (2022). Construction of “Space-Sky-Ground” Integrated
Collaborative Monitoring Framework for Surface Deformation in Mining Area. Remote Sensing, 14, 840. doi:
10.3390/rs14040840. Editor Asociado: Dr. Víctor José Cioce Pérez
Dpto. de Cs. Geodésicas y Geomática
Universidad de Concepción- Chile
Universidad del Zulia-Facultad de Ingeniería - Venezuela
vcioce@udec.cl
15
Suárez Acosta, et al
_____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2025, Vol. 48, e254808
REVISTA TECNICA
DE LA
FACULTAD DE
INGENIERIA
UNIVERSIDAD
DEL ZULIA
Volumen 48. Año 2025, Edición continua
Esta revista fue editada en formato digital y
publicada en enero 2025, por el Fondo
Editorial Serbiluz, Universidad del Zulia.
Maracaibo-Venezuela
www.luz.edu.ve
www.serbi.luz.edu.ve
www.produccioncientificaluz.org