A study about the effect of Vitamin E on hyperlipidemia and atherosclerotic lesions in New Zealand white rabbits fed with a 1% cholesterol rich diet.

Marysabel Torres¹, Mercedes Márquez¹, Rosalía Sutil¹, Maira Carrizales¹, María Leal¹ y Aldo Reigosa².

¹Departments of Pharmacology and ²Pathologic Anatomy, School of Medicine, University of Carabobo, Valencia, Venezuela.

Key words: Atherosclerosis, New Zealand rabbits, hyperlipidemia, vitamin E.

Abstract. The purpose of this study was to determine whether the administration of Vitamin E (200mg/day) for 4 weeks could decrease hypercholesterolemia and inhibit atherosclerosis in male hypercholesterolemic New Zealand White rabbits. Plasmatic Total Cholesterol (TC) and LDL-Cholesterol (LDLc) were determined by enzymatic methods and Vitamin E was determined in plasma by HPLC at weeks 0, 4 and 8. A histopathological study was carried out at week 8 (w8), using a hematoxylin-eosin method. Forty rabbits were divided randomly into 5 groups and fed different diets. These diets included a Normal diet, a 1% Cholesterol rich diet, a Normal diet + Vitamin E and 1% Cholesterol rich diet + Vitamin E. The findings did not show a reduction of Total Cholesterol and LDLc in the groups of rabbits that received Vitamin E (III and IV) at weeks 4 and 8. At the end of the experiment, all the animals were deeply anesthetized with hydrochloride ketamina (60 mg/kg body wt) in order to carry out a histopathological study. Regarding the atherosclerotic lesions, Vitamin E did not induce inhibition of the atherosclerotic plaque development or any modification in the lesion type induced by the hypercholesterolemic diet. In conclusion, the results suggest that additional studies need to be carried out with higher doses and/or treatments for a longer period in order to clarify in detail whether Vitamin E really has a hypocholesterolemic effect and inhibits atherosclerosis.

Corresponding author: Marysabel Torres, Urbanización El Bosque, Av. 114, Residencias Vulcano, Torre A, Apto. 3D, Valencia, Estado Carabobo, Venezuela. Fax number: 0241-8666258. Telephone number: 0241-8666530, 0414-4368392, 0241-6172739. E-mail: mtorresr@uc.edu.ve
Efecto de la vitamina E sobre la hiperlipidemia y lesiones ateroescleróticas en conejos blancos Nueva Zelandia alimentados con una dieta rica en colesterol al 1%.
Invest Clín 2003; 44(2): 119-127

Palabras claves: Ateroesclerosis, conejos Nueva Zelandia, hiperlipemia, vitamina E.

Resumen. El propósito de este estudio fue determinar si la administración de Vitamina E (200mg/día) por 4 semanas podía disminuir la hipercolesterolemia e inhibir la aterosclerosis en conejos machos Nueva Zelandia. El Colesterol total plasmático (CT) y el LDL-colesterol (LDLc) fueron determinados por método enzimático y la Vitamina E en plasma por HPLC a la semana 0, 4 y 8. A la semana 8 (8s) un estudio histopatológico fue llevado a cabo usando el método de hematoxilina-eosina. Cuarenta conejos fueron divididos al azar en 5 grupos y alimentados con diferentes dietas. Estas dietas incluyen una dieta normal, dieta rica en 1% de Colesterol, una dieta normal + vitamina E y una dieta rica en 1% de Colesterol + vitamina E. Los hallazgos de este trabajo no muestran una reducción del CT y LDLc en los conejos que recibieron Vitamina E a las semanas 4 y 8. Al final del experimento, a fin de realizar el estudio histopatológico, todos los animales fueron profundamente anestesiados con hidrocloruro de ketamina (60 mg/Kg/peso corporal). Con respecto a las lesiones ateroescleróticas, la Vitamina E no indujo inhibición del desarrollo de la placa ateroesclerótica ni modificaciones en los tipos de lesiones inducidas por la dieta hipercolesterolémica. En conclusión, los resultados sugieren que sería necesario realizar estudios adicionales con mayores dosis y/o tratamientos más prolongados para clarificar en detalle si la Vitamina E realmente posee efecto hipocolesterolémico e inhibe la aterosclerosis.

Received: 05-11-01. Accepted: 14-10-02.

INTRODUCTION

Hypercholesterolemia is a major risk factor for atherosclerosis (1). An increased rate of low density-lipoprotein cholesterol (LDLc) oxidation may increase the risk of premature atherosclerosis (2). The premise that oxidative stress, among several other factors, plays an important role in atherogenesis implies that the development and progression of atherosclerosis can be inhibited by antioxidants (3).

Vitamin E is the major liposoluble antioxidant active in biological systems (4) and may benefit rabbits that are fed an atherogenic diet by inhibiting the development of atherosclerotic lesions (5). The purpose of this study was to determine whether vitamin E could decrease hypercholesterolemia and inhibit aortic atherosclerotic lesions in hypercholesterolemic New Zealand White rabbits.

MATERIALS AND METHODS

Forty male New Zealand White rabbits (8-10 weeks old) were obtained from the Venezuelan Institute for Scientific Investigation (IVIC), Caracas, Venezuela. Procedures and care used in animals were in
compliance with the Guide for the Care and Use of Laboratory Animals (6). The University of Carabobo’s Research Ethics Committee, Venezuela approved the study. The animals were housed individually in steel cages under controlled light, and acclimatized 1 week prior to the study. They were fed normal rabbit chow (ND) (Protinal, Valencia, Venezuela) and divided randomly into 5 groups, which received an average of 150g/day of different diets. See Table I for a description of each group. The chow was weighed before and after being consumed. A hypercholesterolemic diet was prepared weekly by adding Cholesterol (Sigma, St. Louis, MO) to the normal diet and stored until used at 4°C. Vitamin E, 200mg/day (Elmor Laboratories, Venezuela) was added daily to the corresponding diet. All animals were weighed weekly.

Hystological analysis

At the end of the treatment, the rabbits were deeply anesthetized with ketamine hydrochloride (60-mg/kg body wt). The descendent aorta was removed; each aortic segment was cleaned of adventitial tissue, rinsed with isotonic saline and opened along the intercostals. The opened aortas were flattened on strips of paper with the intimal side up. After adherence to the paper strips, the vessels were fixed face down overnight with 10% buffered formalin at room temperature. The fixed aortas were dyed with hematoxylin-eosin (7). Then, the lesions were identified by a microscopic eyepiece micrometer and classified following the American Heart Association criteria (8), which considers Type II lesions as early lesions. Type III lesions, known as intermediate lesions or preatheromas, form the bridge between early and advanced lesions. Type IV lesions, known as atheroma, are the first lesions considered advanced by histological criteria. In this classification the term advanced lesion is used as an umbrella term for lesions that disrupt initial structure, i.e., all lesions following Type IV). Type V lesions show substantial reparative fibrous connective tissue layers, in addition to one or more lipid cores that may be labeled Type Va (fibroatheroma) or Type Vb lesions, characterized by calcified lesions.

Lipid determination

At weeks 0 (prior to the study), 4 and 8 (after receiving the diets) blood samples were taken from the ear marginal vein and Total Cholesterol and LDLc were determined in plasma using enzymatic and colorimetric methods (Wiener Laboratories S.A.I.C., Argentina).

Vitamin E determination

Serum alpha tocopherol in all animals was measured by an isocratic reverse phase HPLC method (9). The samples were analyzed using a Hewlett-Packard HPLC system, equipped with Sherisorb C-18 column. Mobile phase (filter and degassed), metha-

TABLE I

<table>
<thead>
<tr>
<th>Group</th>
<th>Week 1 through week 4</th>
<th>Week 4 through week 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal rabbit chow</td>
<td>Normal rabbit chow</td>
</tr>
<tr>
<td>II</td>
<td>1% Cholesterol rich diet</td>
<td>1% Cholesterol rich diet</td>
</tr>
<tr>
<td>III</td>
<td>1% Cholesterol rich diet</td>
<td>1% Cholesterol rich diet + Vitamin E (200 mg/day)</td>
</tr>
<tr>
<td>IV</td>
<td>1% Cholesterol rich diet</td>
<td>Normal rabbit chow + Vitamin E (200 mg/day)</td>
</tr>
<tr>
<td>V</td>
<td>1% Cholesterol rich diet</td>
<td>Normal rabbit chow</td>
</tr>
</tbody>
</table>
nol/water (95:5 v/v) was determined using eluted tocopherol. The flow rate was set to 1.5 mL/min and the wavelength of the eluate was monitored at \(\lambda = 292 \) nm. Serum levels of tocopherol were standardized with media plasmatic Cholesterol + plasmatic Triglycerides (10).

Statistical analysis

Differences in lipid values among groups were tested using one-way ANOVA in conjunction with Tukey-Kramer Multiple Comparisons. (Instat 1.1, Graph PAD Software, San Diego, CA). The statistical probability of \(p < 0.05 \) was considered significant. Atherosclerotic lesions were observed in each group and the results expressed in \% taking into account the total number of lesions in each group and classified by type and their respective percentage.

RESULTS

Total cholesterol (TC) and LDLc

Group I did not show changes in TC and LDLc concentrations at w4 and w8 (\(p > 0.05 \)). Group II showed a significant increase in TC and LDLc at w4 and w8 (\(p < 0.001 \)). Group III showed a significant increase in TC at w4 (\(p<0.001 \)), this group received Vitamin E + 1% Cholesterol rich diet between w4 and w8 and did not diminish significantly TC and LDLc levels at w8 in relation to w4 (\(p>0.05 \)). Group IV increased TC levels at w4 (\(p<0.001 \)); when the hypercholesterolemic diet was suspended between w4 and w8 and a normal diet + Vitamin E was administered, TC and LDLc levels decreased significantly at w8 in relation to w4 (\(p < 0.001 \)), but did not reach baseline values. Group V increased significantly its TC and LDLc levels at w4 (\(p < 0.001 \)), the suspension of 1% Cholesterol rich diet at w4 and the administration of a normal diet between w4 and w8 decreased significantly TC and LDLc levels at w8 in relation to w4 (\(p<0.001 \)). This group’s TC and LDLc values at w8 did not show significant differences with baseline values. Maximum decrease of TC and LDLc concentrations was not reached with the administration of Vitamin E, although it was reached with a normal diet (Figs. 1 and 2).

Vitamin E

Baseline values of Vitamin E in all groups were similar. Group I did not show significant differences at any point during

![Fig. 1. Total cholesterol changes with the different diets.](image-url)
Group II, which received a hypercholesterolemic diet during the whole experiment, did not exhibit significant differences between baseline values and w4 values (p>0.05); in contrast, it showed significant differences between baseline values and w8 values (p<0.001), and between the values of w4 and w8 (p<0.001). Group III did not present significant differences between baseline values and w4 values (p>0.05) while it did show significant differences between baseline values and w8 values (p<0.001), and between the values of w4 and w8 (p<0.001). Group III had the highest Vitamin E value. Group IV did not show significant differences between baseline values and w4 values (p<0.001), and between the values of w4 and w8 (p<0.001). Group V showed a tendency to increase its baseline values at 4 weeks, but the increase was not statistically significant (p>0.05); similarly, this group did not show significant differences during other periods (Table II).

Histopathological study

There were no consistent differences in the percentage of lesions by type among the groups (Table III). All groups, except control group (I) showed predominantly Type III (Fig. 3) and Type IV (Fig. 4) lesions.

DISCUSSION

Vitamin E is a highly effective antioxidant, carried in the plasma by lipoproteins,
including LDLc, where it works as a protector of polyunsaturated fatty acids, present mainly in phospholipids and cholesterol esters that protect against free radical damage (11). The concentration of Vitamin E in LDL particles may be an important determinant of atherosclerosis risk (12).

In the present study, the administration of 1% Cholesterol rich diet to New Zealand White rabbits for 4 weeks induced a hypercholesterolemic condition, fact that corresponds with other studies (12, 13).

It was assessed whether oral supplementation with 200 mg/day of Vitamin E between weeks 4 and 8 in New Zealand White rabbits fed with 1% Cholesterol rich diet for 4 weeks could decrease significantly TC and LDLc levels and protect against atherosclerosis. The results showed a higher reduction of TC and LDLc levels in rabbits

<table>
<thead>
<tr>
<th>Group</th>
<th>Type II</th>
<th>Type III</th>
<th>Type IV</th>
<th>Type Va</th>
<th>Type Vb</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3</td>
<td>100</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>II</td>
<td>12</td>
<td>23.07</td>
<td>18</td>
<td>34.61</td>
<td>22</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>4.83</td>
<td>40</td>
<td>64.51</td>
<td>19</td>
</tr>
<tr>
<td>IV</td>
<td>14</td>
<td>20</td>
<td>33</td>
<td>47.14</td>
<td>20</td>
</tr>
<tr>
<td>V</td>
<td>11</td>
<td>14.66</td>
<td>46</td>
<td>61.33</td>
<td>12</td>
</tr>
</tbody>
</table>

Data area expressed in each group by frequency and %

Fig. 3. Type III lesion. Foam cells surrounded by intracellular lipids of scarce to moderate quantity.

Fig. 4. Type IV lesion, foam cell collections with great accumulation of intra and extracellular lipids can be observed.

TABLE III
ATHEROSCLEROTIC LESIONS’ FINDINGS ACCORDING TO CLASSIFICATION OF THE AMERICAN HEART ASSOCIATION (1995)
whose hypercholesterolemic diet was sus-
pended at w4 and received a normal diet be-
tween weeks 4 and 8 in relation to rabbits
that received, during the same period and
conditions, a normal diet plus Vitamin E.

The fact that incorporation of Vitamin
E between weeks 4 and 8 in Group IV pre-
vented an increase of TC and LDLc at week
8 in relation to week 4 does not mean that
the administration of Vitamin E has any ef-
fact since Group V, which did not receive
Vitamin E, but a normal diet, showed simi-
lar results. This means, at least in the ex-
perimental model used in this research,
that an adequate diet represents a better
way for controlling hypercholesterolemia
than supplementation with Vitamin E.

The results of this research coincide
with an earlier study in rabbits, which re-
ported that mean plasma total cholesterol
in an alpha-tocopherol treated group was
not significantly lower than controls (13).
However, other studies on rabbits and mice
(14-16) reported that supplementing a diet
with vitamin E improved some important
plasma lipids parameters but did not have
an effect on the atherosclerotic plaque for-
mation.

Regarding the histological study of
this investigation, when comparing the re-
sults of Groups II and III, it is observed that
in the former group, Type IV/Type III le-
sions relationship was higher (1.22) than
group’s III (0.47). In this sense, it is impor-
tant to notice that Type IV lesions are more
advanced than Type III lesions. However,
when comparing Group IV and V it is ob-
served that in group IV, which incorporated
Vitamin E between w4 and w8 showed that
Type IV /Type III lesions relationship is
higher (0.6) than group’s V (0.26). Group V
results could be attributed to the fact that
advanced structural damage induced by the
hypercholesterolemic diet cannot be re-
verted by a normal diet only. Therefore,
these results do not permit to conclude
that Vitamin E reduces atherosclerotic
plaque development.

Results on atherosclerotic plaque coin-
cide with other studies done in New Zealand
rabbits (17,18), Watanabe heritable hyper-
lipidemic rabbits (19) and mice (16); but
diffs with two studies in rabbits, which re-
ported significant inhibition of atheroscle-
rosis by Vitamin E (20,21). Besides, it is
relevant to mention that the histological
study of this research had as a limitation,
the quantification of atherosclerotic lesions
by frequency and type, which does not
measure extension of atherosclerotic les-
ions.

On the other hand, several epidemiol-
ogical studies, like the Cambridge Antioxi-
dants Study (21) and Vitamin E and coro-
nary mortality in the elderly (22, 23) showed
that there is an inverse relation between Vi-
tamin E and the risk of atherosclerosis.

These results may be due to several fac-
tors: the amount of plasma cholesterol con-
centration (about 1600 mg/dL) reached in
this study with a 1% Cholesterol rich diet
was very high. Therefore, to obtain a suc-
cessful pharmacological intervention with
Vitamin E may require carrying out a study
under these same conditions but for a period
longer than 6 months or several years (19).
The reduction of hyperlipidemia and ather-
sclerosis only occurs when antioxidants are
given in relative high amounts. Hence, the
degree of antioxidant protection provided by
200mg/day of Vitamin E for 4 weeks was in-
sufficient to influence hyperlipidemia and
atherogenesis (19). However, the data ob-
tained in this study are in agreement with
previous extensive clinical studies (24, 25).

The absence of a significant protection
by Vitamin E cannot be attributed to poor
enrichment of serum lipoproteins since plasmatic concentrations were markedly
higher (65 fold) in Group III and 15 fold in
Group IV, which had Vitamin E supplemen-
tation. Group’s III higher concentrations of
Vitamin E in relation to group IV could be explained since vitamin E is liposoluble and its absorption is higher when it is administered jointly with a Cholesterol rich diet as shown in this group.

In conclusion, the results show that additional studies are needed in order to clarify in detail whether Vitamin E supplementation does decrease hypercholesterolemia and attenuates atherosclerosis progression.

ACKNOWLEDGMENT

CDCH University of Carabobo, Grant 96008, sponsored this research.

The authors wish to thank Lidia Bagur, Ruben Toro, José Luis Macias, Robinón Oviedo, Marisol Flores and Luis Lara for their technical assistance.

REFERENCES

