© The Authors, 2025, Published by the Universidad del Zulia*Corresponding author: yhonny.valverde@unesum.edu.ec
Keywords:
Variety
Growth parameters
Arabica coee
Plant development
Agronomic evaluation
Morphometric and phenotypic characteristics of eight genotypes of Coea arabica L. during
vegetative development
Rasgos morfométricos y fenotípicos de ocho genotipos de Coea arabica L. durante el desarrollo
vegetativo
Características morfométricas e fenotípicas de oito genotipos de Coea arabica L. durante o
desenvolvimento vegetativo
María José Galarza Pisco
1
Alfredo Valverde Lucio
2*
Rev. Fac. Agron. (LUZ). 2025, 42(4): e244252
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v42.n4.IX
Crop production
Associate editor: Dr. Jorge Vilchez-Perozo
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Ingeniera Agropecuario, maestrante de la Maestría en
Agropecuaria del Instituto de Posgrado de la Universidad
Estatal del Sur de Manabí, Jipijapa, Ecuador.
2
Doctor en Biociencias y ciencias agroalimentarias, docente
investigador de la Carrera Agropecuaria y de la Maestría
en Agropecuaria el Instituto de Posgrado de la Universidad
Estatal del Sur de Manabí, Jipijapa, Ecuador.
Received: 01-08-2025
Accepted: 28-10-2025
Published: 06-11-2025
Abstract
Coee production represents an important source of
employment and economic dynamism for the south of the province
of Manabí, so it is appropriate to identify the genotypes with the
best morphological behaviour. The objective of the research was
to evaluate the morphological and phenotypic variables of eight
genotypes of Coea arabica L. (“cafe arabica”) in their third year of
vegetative development, in order to identify the best morphological
attributes for large-scale multiplication. A total of 348 plants of
coee genotypes Acawa, Catimor, Catucaí, Sarchimor, Bourbon
yellow, Bourbon red, Manabi and Catuaí were evaluated. For the
statistical analysis of the metric variables, a completely randomised
design was used and linear regression, and for the analysis of the
phenotypic variables, the chi-square statistical analysis was applied.
The results showed highly signicant dierences (P<0.01) in all
quantitative and qualitative variables. The genotype Acawa showed
a better response for leaf length and branch length, Manabí 01 had
greater petiole length and stem diameter; Catuaí showed greater
number of branches, number of nodes and plant height, Bourbon
yellow showed greater length between branches and greater
internode length. As for the analysis of the qualitative variables,
the colour of young leaves, the Bourbon revealed a reddish brown
colour, the other genotypes are green; the leaf shape is oval, except
for the Sarchimor that showed obovate leaves.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254252 October-December. ISSN 2477-9409.
2-7 |
Resumen
La producción de café representa una importante fuente de empleo
y dinamismo económico para el sur de la provincia de Manabí, por
lo que es oportuno identicar los genotipos de mejor comportamiento
morfológico. El objetivo de la investigación fue evaluar las variables
morfológicas y fenotípicas de ocho genotipos de Coea arabica L.
(“café arábigo”) en su tercer año de desarrollo vegetativo, a n de
identicar los mejores atributos morfológicos para su multiplicación
a gran escala. Se evaluó un total de 348 plantas de genotipos de café:
Acawa, Catimor, Catucaí, Sarchimor, Bourbon amarillo, Bourbon
rojo, Manabí y Catuaí. Para los análisis estadísticos de las variables
métricas, se empleó el diseño completamente al azar y regresión
lineal, y para analizar las variables fenotípicas, se aplicó el análisis
estadístico chi cuadrado. Los resultados expresaron diferencias
altamente signicativas (P<0,01) en todas las variables tanto
cuantitativas como cualitativas. El genotipo Acawa presentó una
mejor respuesta para largo de hoja y longitud de rama, Manabí 01
tuvo mayor largo de pecíolo y diámetro de tallo; Catuaí mostró mayor
número de ramas, número de nudos y altura de planta, el Bourbon
amarillo mostró mayor longitud entre ramas y mayor longitud
entrenudos. En cuanto al análisis de las variables cualitativas, el color
de hoja joven, los Bourbon reveló color marrón rojiza, los demás
genotipos son de color verde; la forma de hoja es ovada, excepto para
el Sarchimor que manifestó hojas obovadas.
Palabras clave: variedad, parámetros de crecimiento, café arábigo,
desarrollo vegetal, evaluación agronómica
Resumo
A produção de café representa uma importante fonte de emprego
e dinamismo económico para o sul da província de Manabí, pelo que
é conveniente identicar os genótipos com melhor comportamento
morfológico. O objetivo da investigação foi avaliar as variáveis
morfológicas e fenotípicas de oito genótipos de Coea arabica L. (“café
arabica”) no seu terceiro ano de desenvolvimento vegetativo, a m de
identicar os melhores atributos morfológicos para a multiplicação
em grande escala. Foram avaliadas 348 plantas dos genótipos de café
Acawa, Catimor, Catucaí, Sarchimor, Bourbon amarelo, Bourbon
vermelho, Manabi e Catuaí. Para a análise estatística das variáveis
métricas, foi utilizado um delineamento inteiramente casualizado e
regressão linear, e para a análise das variáveis fenotípicas, foi aplicada
a análise estatística do qui-quadrado. Os resultados mostraram
diferenças altamente signicativas (P<0,01) em todas as variáveis
quantitativas e qualitativas. O genótipo Acawa apresentou melhor
resposta para comprimento de folha e comprimento de ramo, Manabí
01 apresentou maior comprimento de pecíolo e diâmetro de caule;
Catuaí apresentou maior número de ramos, número de nós e altura de
planta, Bourbon amarelo apresentou maior comprimento entre ramos
e maior comprimento de entrenó. Quanto à análise das variáveis
qualitativas, a cor das folhas jovens, o Bourbon revelou cor castanho-
avermelhada, os demais genótipos são verdes; a forma da folha é
oval, com exceção do Sarchimor que apresentou folhas obovadas.
Palavras-chave: variedade, parâmetros de crescimento, café arábica,
desenvolvimento da planta, avaliação agronómica
Introduction
Coee (Coea arabica L.) is one of the most widely traded
agricultural products in the world, due to its high acceptance as a
beverage (Vera-Velásquez et al., 2024). The history of the geographical
distribution of Arabica coee cited by Van der Vossen et al. (2015)
establishes that it originated in Ethiopia and spread to Yemen (6th
century) and was then taken to India, Southeast Asia, Latin America
and East Africa during the 17th-19th centuries.
Coee cultivation has an enormous economic impact, especially
in developing countries (Villalta-Villalobos and Gatica-Arias, 2019).
Approximately 60 tropical and subtropical countries produce coee
on a large scale (Enríquez et al., 2020). Around 7.7 million tonnes of
green coee are produced worldwide each year on an area of 10.5
million hectares, with 85 % of the coee produced in Latin America
(Jiménez et al., 2023).
Vera-Velásquez et al. (2024) cite the prevalence of old coee
plantations with little or no resistance to rust (Hemileia vastatrix) and
the presence of pests and diseases as the most signicant problems
aecting Ecuadorian coee farming. In this regard, Quiroga-Cardona
(2021) mentions that there is a wide genetic diversity in coee
cultivation, which is why it is important to identify plants that are
resistant to pests and diseases and that are easily adaptable to local
climates.
Coee cultivation, an important agricultural activity in Ecuador,
is among the 10 crops with the largest area under cultivation. It is
grown in several provinces of the country (Ponce Vaca et al., 2018),
with production concentrated in the province of Manabí, particularly
in the canton of Jipijapa PDOT del Cantón Jipijapa 2019-2023, 2019;
Venegas Sánchez et al., 2018). Productivity in Ecuador reaches
240,000 ha, with an Arabica coee yield of 231.8 kg.ha-¹ (Duicela
et al., 2018). It is very important for coee-growing areas, as it is a
source of employment for families engaged in this crop (Venegas et
al., 2018).
Arabica coee harvesting is still largely based on traditional
cultivars developed long ago by selecting lines within the Typica and
Bourbon cultivars or from crosses between them (e.g., Mundo Novo,
Catuaí (Ferwerda and Der, 1969).
The objective of the research was to evaluate the morphometric
and phenotypic characteristics of eight genotypes of Coea arabica L.
in order to identify the genotype or genotypes with the best attributes.
Materials and methods
Geographical location of the experimental plots
The research was conducted at the Andil Farm of the Universidad
Estatal del Sur de Manabí, 2.5 km from the town of Jipijapa, Manabí,
located at 1° 18’ 0.0‘ south latitude and 80° 34’ 43.50’ west longitude,
at an altitude of approximately 280 metres above sea level; with
average temperatures between 18 and 23.7 °C. The average annual
rainfall is 500 to 1000 mm and the relative humidity in the rainy
season is 82 to 84 % and in the dry season it is 76.2 % to 80 % (PDOT
Cantón Jipijapa 2019-2023, 2019).
Treatments
The treatments consisted of eight Arabica coee genotypes whose
plants were three years old:
Acawa, Catimor, Catucaí, Sarchimor, Yellow Bourbon, Red
Bourbon, Manabí 01, and Catuaí.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Galarza and Valverde. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254252
3-7 |
Statistical analysis
Based on the dened model, a completely randomised design was
applied, and the comparison of treatment means was performed using
Tukey’s test (P<0.05). In addition, linear regression was performed to
correlate plant height with other variables of interest.
Qualitative variables were analysed using the chi-square test,
which allows the behaviour of two qualitative variables to be
compared.
Results and discussion
Analysis of morphometric variables
Analysis of the morphometric data prior to applying the parametric
statistical model determined that they meet the conditions of
normality and homogeneity of variance. The asymmetry coecient,
kurtosis and Kolmogorov-Smirnov test showed that the data had a
normal distribution and homogeneous variance, with the exception
of the branch length and leaf petiole length variables, which were
transformed using logarithms for normalisation.
The analysis of variance (ANOVA), Table 1, revealed highly
signicant dierences (P<0.01) between treatments (genotypes) in
each of the variables studied, and the coecients of variation (CV)
are within the range permitted for this type of research (8 to 30)
(Gordón-Mendoza and Camargo-Buitargo, 2015).
Specic research management
For the management of the experimental plots, the plants were
supplied with a complete 8-20-20 fertiliser at a dose of 50 g per
individual, plus 25 g per individual of urea. Weed control was carried
out manually every two months during the dry season and increased
monthly during the rainy season. Fifty-seven plants per genotype were
evaluated, totalling 456 plants evaluated throughout the experiment,
with each plant considered an experimental unit. The data were stored
in Excel les, which were subsequently cleaned and analysed using
SPSS Statistics version 26 software (Orellana and Cañarte, 2022).
Morphometric characteristics
The following morphometric variables were measured: plant
height (PH) cm; stem diameter (SD) mm; leaf blade length (LBL) cm;
leaf blade width (LBW) cm; number of branches (NB); branch length
(BL) cm; number of knots by branches (NN); leaf petiole length (LPP)
mm; internode length (IL) cm, distance between branches (DBB).
To collect data on the morphometric variables, the methodology of
Ortiz and Ortega (2024) was followed, using a tape measure and a
RexBeti Stainless Hardened
©
digital caliper (measuring range: 5.906
in. Accuracy: 0.1 inch).
Phenotypic characters
The descriptors of the International Plant Genetic Resources
Institute (IPGRI) (François and Dussert, 2016) were used as a guide
for qualitative data collection. The variables considered were: leaf
colour, leaf shape, leaf apex shape, and young shoot colour.
Table 1. Analysis of variance and comparison of means of the quantitative study variables for each genotype.
Variable Acawa Catimor Catucaí Sarchimor
Yellow
Bourbon
Red Bourbon Manabí 01 Catuaí P-value
Leaf Blade length (LBL) (cm)
19.05±0.01
a
(5.84)
18.29±0.03
ab
(2.73)
18.09±0.01
b
(4.00)
17.47±0.01
bc
(5.71)
16.71±0.01
cd
(4.26)
15.97±0.01
de
(2.88)
15.56±0.01
e
(2.43)
15.48±0.01
f
(4.00)
<0.01
Leaf Blade width (LBW) (cm)
8.33±0.1
bc
(6.56)
7.94±0.11
cd
(10.09)
7.67±0.11
de
(9.85)
8.81±0. 23a
(13.85)
8.42±0.07
ab
(6.51)
8.39±0.07
abc
(6.18)
7.37±0.08
e
(6.85)
6.45±0.11
f
(11.03)
<0.01
Number of Branches (NB)
48.16±1.63
ab
(19.19)
46.69±1.38
bc
(21.11)
48.50±2.6
ab
(30.24)
39.07±2.16
cd
(29.75)
41.91±1.71
bcd
(33.22)
39.14±1.74
cd
(30.47)
37.08±1.25
d
(21.28)
53.77±2. 6
ab
(30.24)
<0.01
Branch Length (BL) (cm)
71.71±0.02
a
(5.17)
63.4±0.01
bcd
(3.76)
62.63±0.0
cd
(4.7)
65.81±0.02
b
(4.59)
63.82±0.01
bc
(2.8)
66.36±0.01
bc
(2.64)
56.86±0.01
d
(2.51)
69.35±0.01
ab
(4.7)
<0.01
Knots by branches (NN)
17.32±0.48
ab
(15.54)
14.45±0.24
c
(11.95)
14.99±0.7
bc
(21.21)
14.79±0.99
c
(36.11)
17.2±0.46
ab
(20.2)
12.18±0.42
d
(25.52)
16.05±0.5
abc
(19.67)
17.98±0. 7a
(24.21)
<0.01
Plant height (PH) (cm)
178.31±3.71
b
(11.78)
189.98±3.66
b
(13.75)
186.45±5.88
b
(16.3)
145.8±5.88
c
(21.73)
189.62±6.55
b
(26.29)
178.07±8.62
b
(35.57)
128.40±2.97
c
(14.61)
217.23±5. 88a
(16.3)
<0.01
Stem diameter (SD) (mm)
35.63±0.97
bc
(15.35)
29.11±0.92
d
(22.47)
28.91±0.87
d
(17.12)
29.73±0.96
bc
(17.44)
38.72±1.07
b
(20.87)
34.89±1.14
bc
(24.05)
45.84±1. 35
a
(18.56)
31.71±0.87
cd
(17.12)
<0.01
Leaf Petiole Length (LLP)
1.46±0.02
b
(18.91)
1.16±0.02
c
(13.55)
1.16±0.05
cd
(24.88)
1.3±0.1
c
(43.24)
1.03±0.03
d
(19.15)
1.02±0.03
d
(19.15)
1.78±0.03
a
(11.48)
1.23±0.05
c
(24.88)
<0.01
Distance between branches (DBB)
(cm)
12.07±0.66
cd
(30.06)
13.88±0.34
ab
(17.27)
14.23±0.52
ab
(25.93)
11.34±0.79
d
(37.62)
15.27±0. 49
a
(24.41)
12.73±0.53
bcd
(30.52)
7.50±0.47
e
(39.38)
12.41±0.52
bcd
(25.93)
<0.01
Length between knots (LBK) (cm)
5.58±0.21b
c
(21.02)
4.88±0.14
cd
(20.79)
7.67±0. 2
a
(21.06)
5.93±0.28
b
(25.18)
7.34±0. 23
a
(23.87)
6.4±0.23
b
(23.34)
4.61±0.09
e
(11.94)
5.80±0.2
b
(21.06)
<0.01
Tukey test results; a, b, c, d for each control, the minimum quadratic means without a common superscript dier signicantly (p < 0.05) between groups.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254253 October-December. ISSN 2477-9409.
4-7 |
The Catuaí genotype performed best in terms of the AP variables,
with an average of 217.23 ± 5.88 cm, NR with an average of 53.77 ±
2.6 branches, and NN per branch of 17.98 ± 0.7. on the other hand,
the genotype that presented the lowest height was Manabí 01, with an
average of 128.40 ± 2.97 cm, as well as the genotypes Sarchimor with
39.07 ± 2.16 and Manabí 01, with 37.08 ± 1.25, which were those
with the lowest NR, and the Catimor genotypes with 14.45 ± 0.24 and
Bourbon Rojo with an average of 12.18 ± 0.42 were the genotypes
with the lowest number of nodes per branch.
The Acawa genotype showed the best response in LL with an
average of 19.05 ± 0.01 cm; in contrast, Catuaí exhibited the shortest
length, reaching only 15.48 ± 0.01 cm. Similarly, the Acawa genotype
had the highest LR with an average of 71.71 ± 0.02 cm, while the
Catucai genotypes with 62.63 ± 0.01 cm and Manabí 01 with an
average of 56.86 ± 0.01 cm had the lowest values for this variable.
The Sarchimor genotype stood out for having the highest AL,
with an average of 8.81 ± 0.23 cm, and the treatment that showed the
lowest response was Catuaí, with an average of 6.45 ± 0.11 cm. In
terms of DT, with an average of 45.84 ± 1.35 mm, and LDPF, with an
average of 1.78 ± 0.03 mm, the Manabí 01 genotype performed best.
Analysis of the DER variable determined that the Yellow Bourbon
genotype had an average of 15.27 ± 0.49 cm, and the lowest averages
were for the Sarchimor 11.34 ± 0.79 cm and Manabí 01 7.50 ± 0.47
cm genotypes. With regard to the LEN variable, it was observed that
the Catucaí genotypes with 7.67 ± 0.20 cm and Yellow Bourbon with
7.34 ± 0.23 cm had the longest internode lengths.
Enríquez et al. (2020) reported that Sarchimor exhibited a greater
number of branches and better phenotypic expression compared to
other genotypes, specically in Manabí 01. For their part, Castro et al.
(2024), in their work with 20 genotypes between hybrids and varieties,
observed better performance in the hybrids; likewise, a great deal of
variability was observed even among hybrids. In a study conducted
by Valverde et al. (2024) on the hybrids Sarchimor 4260, Sarchimor
1669 and Manabí 01, it was stated that even among the Sarchimor
hybrids there were marked morphological dierences, which coincide
with our study. The results conrm the ndings of Bonomo et al.
(2004), who pointed out that variability within dierent genotypes
may be greater than in pure varieties due to genetic segregation in
early generations.
The variability found in this study is attributed, in self-pollinating
species such as C. arabica, to evolutionary processes or natural
mutations that occur within the population (Olika et al., 2011), a
view shared by various researchers (Adem, 2020; Alemayehu, 2019;
Getachew et al., 2017; Mossie et al., 2017); Chen (2010) mentioned
that morphometric characters interact with the environment and are
governed by many genes (polygenic) with small additive eects;
this makes it very dicult for the cultivars obtained to behave in the
same way in all environments, and according to this, it is due to the
allopolyploidy of their genome.
Milla et al. (2019), meanwhile, pointed out that the vegetative
development of coee plants is closely linked to the interaction of
their components, such as the association of species and coee variety.
These factors directly inuence agronomic behaviour, reecting
their growth and adaptation potential. In this regard, Khemira et
al. (2024) indicated that it is important to conduct morphological
studies as a crop sustainability strategy, leading to the creation of
new coee varieties or populations that can better adapt to changing
environmental conditions that may threaten dierent crops.
Linear regression analysis determined that there is a positive
correlation between the variable plant height and the variables
number of branches, branch length and distance between branches
(Figures 1, 2, 3), deducing that at greater heights the probability of
having more branches increases, although the distance between them
also increases. It should be noted that the Manabí 01 genotype is the
most homogeneous in terms of the morphological variables analysed.
With regard to the variables plant height and stem diameter, Figure
4 shows that there is no correlation between stem diameter and plant
height among the genotypes. In a study conducted by Espinoza et al.
(2021), it was noted that stem diameter has a positive correlation with
plant height, contrary to our study, where the largest stem diameter is
found in the Manabí 01 hybrid, which is the shortest in height. In this
regard, Álvarez et al. (2024) indicate that certain traits are due to the
characteristics of each genetic material.
Valverde et al. (2025) compared morphometric characteristics
with productive characteristics and identied that both are correlated,
asserting that a plant with good morphological characteristics tends
to be more productive.
Figure 1. AP - NR linear regression.
Figure 2. AP - LR linear regression.
Figure 3. AP - DER linear regression.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Galarza and Valverde. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254252
5-7 |
Analysis of phenotypic variables
The results of the Chi-square analysis (Table 2) showed statistical
dierences in all the variables evaluated (P<0.01). With regard to the
colour of young leaves, it was observed that the Catuaí and Sarchimor
genotypes had 100 % green leaves, while the Catucaí, Catimor and
Acawa genotypes had green leaves in percentages greater than 86%,
and the Bourbon amarillo, Bourbon rojo and Manabí 01 genotypes
had an average of between 20 and 26 % greenish leaves; reddish-
brown leaves in percentages of 2 to 7 % were only found in the
Bourbon genotypes.
In the analysis of young leaf shape, it was observed that the
Sarchimor genotype had 100 % obovate leaves, while Catuaí had
100 % ovate leaves. The ovate leaf is also the characteristic shape of
the Yellow Bourbon, Red Bourbon, Acawa, Catimor, Manabí 01 and
Catucaí genotypes, with a predominance of up to 87 %.
Regarding the shape of the leaf apex, when analysing the results
by genotype, it was observed that most of them had an apiculate apex,
Figure 4. AP - DT linear regression.
Table 2. Analysis of phenotypic traits using the chi-square test.
Color de la hoja joven (CHJ)
Total P value
Treatment Greenish Green Reddish brown
Acawa 2 30 0 32
0.01
Yellow Bourbon 15 42 1 58
Red Bourbon 10 40 4 54
Catimor 7 44 0 51
Catuaí 0 39 0 39
Catucaí 5 39 0 44
Manabí 01 8 32 0 40
Sarchimor 4260 0 30 0 30
Total 47 296 5 348
Shape of young leaf (FHJ)
Total
Treatament Obovate Ovate Elliptical
Acawa 0 27 5 32
0.01
Yellow Bourbon 0 53 5 58
Red Bourbon 0 47 7 54
Catimor 0 45 6 51
Catuaí 0 39 0 39
Catucaí 0 36 8 44
Manabí 01 2 29 9 40
Sarchimor 4260 30 0 0 30
Total 32 276 40 348
Shape of the leaf apex (FAH)
Total
Tratamientos Acute Pointy Apiculated
Acawa 0 0 32 32
0.001
Yellow Bourbon 16 1 41 58
Red Bourbon 16 0 38 54
Catimor 5 0 46 51
Catuaí 0 0 39 39
Catucaí 5 0 39 44
Manabí 01 8 0 32 40
Sarchimor 4260 0 0 30 30
Total 50 1 297 348
** Highly signicant statistical dierences
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254253 October-December. ISSN 2477-9409.
6-7 |
and the Yellow Bourbon, Red Bourbon, Catimor, Catucaí and Manabí
01 varieties had averages of up to 30 % with an acute apex. In relation
to the variable colouration of the young leaf, the analysis by genotype
determined that Acawa, Yellow Bourbon, Red Bourbon, Catimor,
Catuaí, and Manabí 01 had young leaves with green colouration,
while the Catucaí and Sarchimor genotypes were characterised by a
predominance of young leaves with dark brown colouration.
Studies conducted by Álvarez et al. (2024) with the Sarchimor,
Catuaí, Red Bourbon, and Yellow Bourbon genotypes, and work
carried out by Valverde et al. (2024) with both Sarchimor hybrids
and the Manabí 01 hybrid, show that the colour of young leaves is
green, which coincides with our study. With regard to leaf shape,
these researchers dier from the results obtained, pointing out that
in both studies the leaves are elliptical in shape. The variability
presented according to Milla et al. (2019) is due to the fact that each
genotype has dierent responses to the ecosystem of which it is part,
highlighting factors such as climate, solar radiation, and quantity and
quality of shade.
For their part, Alvarado-Alvarado and Ochoa-Fonseca (2006)
mention that the study of phenotypic variables will allow the
incorporation of acceptable materials, in addition to obtaining more
harmonious mixtures with a good phenotype and relatively more
homogeneity.
Conclusions
The analysis of morphometric characteristics revealed
heterogeneity among the various genotypes studied in their third year
of vegetative development. With regard to phenotypic characteristics,
it was determined that there are genotypes with particular
characteristics.
The ndings obtained from the study of eight Arabica coee
genotypes determined that genotypes such as Manabí 01 and
Sarchimor 4260, with average heights of 128 and 1.45 cm, are the most
suitable, as they facilitate harvesting. The stem diameter of Manabí
01, at 45.84 mm, is positive, considering that coee in our sector is
grown on slopes and therefore provides greater rmness; and having
a lower DER than the other genotypes means that the dierence in
NR is not representative with respect to the rest of the genotypes. For
these reasons, the Manabí 01 and Sarchimor genotypes would so far
be the most promising for multiplication.
Acknowledgements
The authors would like to thank the Universidad Estatal del Sur
de Manabí for its contribution to the research project ‘Development
of strategies to increase Arabica coee production (Coea arabica)
– Phase II’.
Literature cited
Adem, A. (2020). Determination of linear model for coee leaf area measurement.
Genomics & Plant Breeding, 4(3), 141–146. https://www.researchgate.
net/publication/348376606
Alemayehu, D. (2019). Estimation of Genetic Component and Heritability for
Quantitative Traits in Amaro Coee (Coea Arabica L.) Landrace at
Awada, Southern Ethiopia. International Journal of Research Studies in
Science, Engineering and Technology, 6(11), 1–9. https://ijrsset.org/pdfs/
v6-i11/1.pdf
Alvarado-Alvarado, G., & Ernesto Ochoa-Fonseca, H. (2006). Características
fenotípicas de componentes de variedad castillo® en dos ambientes.
100 Cenicafé, 57(2), 100-121 https://www.cenicafe.org/es/publications/
arc057%2802%29100-121.pdf
Álvarez H., Chele Campozano J., Ayon F., García C., & Valverde L. (2024). Efecto
de dos alternativas de fertilización edáca sobre el crecimiento de cuatro
variedades de café arábigo. SPAMCIENCIA, 15, 1-8. https://doi.org/
https://doi.org/10.51260/revista_espamciencia.v15iE.514
Bonomo, P., Damião Cruz, C., Marcelo Soriano Vlana, J., Alves Pereira, A.,
Rodrigues Ollvelra, V., & Crescêncio Souza Carneiro, P. (2004). Seleç
ão antecipada de progênies de café descendentes de “híbrido de timor”
x “catuaí amarelo” e “catuaí vermelho.” Acta Scientiarum. Agronomy,
26 (1), 91–96. https://www.alice.cnptia.embrapa.br/alice/bitstream/
doc/779064/1/Selecaoantecipada...Bonomoetal2004.pdf
Castro, C. A., Indacochea, B., García, J., Gabriel, J., & González, M. (2024).
Características morfológicas de 20 cultivares de café arábigo (Coea
arabica) en la nca Andil de la UNESUM. ESPAMCIENCIA, 15, 1–9.
https://doi.org/https://doi.org/10.51260/revista_espamciencia.v15iE.540
Chen, Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor.
Trends in Plant Science, 15(2), 57–71. https://doi.org/10.1016/j.
tplants.2009.12.003
Duicela G. L., Andrade, J., Farfán, D., & Velásquez S.. (2018). Calidad
organoléptica, métodos de benecio y cultivares de café robusta (Coea
canephora Pierre ex Froehner) en la amazonía del Ecuador. Revista
Iberoamericana de Tecnología Postcosecha, 19(2), 1-8. https://www.
redalyc.org/journal/813/81357541011/html/
Enríquez, J. P., Retes-Cálix, R. F., & Vásquez-Reyes, E. F. (2020). Importancia,
genética y evolución del café en Honduras y el mundo. Innovare: Revista
de Ciencia y Tecnología, 9(3), 149–155. https://doi.org/10.5377/innovare.
v9i3.10649
Espinoza A., Váconez, G., Tapia, C., & Duicela G. (2021). Crecimiento, desarrollo
y concentración de macronutrientes en genotipos de café (Coea robusta
P.) con diferentes dosis de abono orgánico. Ciencia Latina Revista
Cientíca Multidisciplinar, 5(6), 11718–11734. https://doi.org/10.37811/
cl_rcm.v5i6.1196
Ferwerda, F. P., & Der, B. (1969). Outlines of perennial crop breeding in the
tropics by numerous authors edited by f. wit foundation for agricultural
plant breeding wagenin gen. https://edepot.wur.nl/455436
François A., & Dussert, S.. (2016). Descriptores del café (Coea spp. y Psilanthus
spp.) (International Plant Genetic Resources Institute (IPGRI), Ed.).
https://cgspace.cgiar.org/server/api/core/bitstreams/5b869086-7d8f-4fed-
be0d-70101f2c2afe/content
Getachew, W., Sentayehu, A., & Taye, K. (2017). Genetic variability, heritability
and genetic advance for quantitative traits in coee (Coea arabica L.)
accessions in Ethiopia. African Journal of Agricultural Research, 12(21),
1824–1831. https://doi.org/10.5897/ajar2016.12059
Gordón-Mendoza, R., & Camargo-Buitargo, I. (2015). Selección de estadísticos
para la estimación de la precisión experimental en ensayos de maíz.
Agronomía Mesoamericana, 26(1), 55. https://doi.org/10.15517/
am.v26i1.16920
Jiménez Buri, K. A., Quezada, J. M., & Vega Granda, A. del C. (2023). Análisis
de las exportaciones del café en el Ecuador, periodo 2017-2021. Ciencia
Latina Revista Cientíca Multidisciplinar, 7(1), 6166–6184. https://doi.
org/10.37811/cl_rcm.v7i1.4909
Khemira, H., Mahdhi, M., Tounekti, T., Oteef, M. D. Y., Afzal, M., Alfai, Z.,
Sharma, M., Alsolami, W., & Shargi, D. (2024). Diversity among Coea
arabica populations in southwestern Saudi Arabia as revealed by their
morphometric features. Notulae Botanicae Horti Agrobotanici Cluj-
Napoca, 52(1), 1–22. https://doi.org/10.15835/nbha52113452
Milla Pino, M. E., Cruz, S. M. O., Espinoza, S. T. L., Silva, R. C., Torres, O. A. G.,
Gurbillón, M. Á. B., & Quintana, J. L. M. (2019). Agronomic behavior
of three coee varieties (Coea arabica) under shade using longitudinal
data. Acta Agronomica, 68(4), 271–277. https://doi.org/10.15446/acag.
v68n4.70496
Mossie, G. A., Atinafu, G., & Mohammed, H. (2017). Agro-Morphological
Characterization of Sidama Coee (Coea Arabica L.) Germplasm
Accession under its Specialty Coee Growing Area, Awada, Southern
Ethiopia. International Journal of Research Studies in Science,
Engineering and Technology, 4(12), 11–23. https://www.researchgate.
net/publication/352509853
Olika K., Sentayehu A., Taye K., & Weyessa G. (2011). Variability of Quantitative
Traits in Limmu Coee (Coea arabica L.) in Ethiopia. International
Journal of Agricultural Research, 6, 482–493. https://doi.org/10.3923/
ijar.2011.482.493
Orellana S. K. D., & Cañarte V. J. C. (2022). Bioestadística aplicada a
investigaciones cientícas en Salud (Mawil Publicaciones de Ecuador,
Ed.; Primera). Mawil. https://doi.org/https://doi.org/10.26820/978-9942-
602-23-7
Ortiz B., J., & Ortega, J. (2024). Obtención de genotipos mejorados de café
(Coea arabica L.) para la zona sur de Manabí, Ecuador. UNESUM -
Ciencias. Revista Cientíca Multidisciplinaria, 8(2), 118–130. https://doi.
org/10.47230/unesum-ciencias.v8.n2.2024.118-130
Plan de desarrollo y ordenamiento territorial del cantón Jipijapa 2019-2023.
(2019). https://jipijapa.gob.ec/images/Planes/PDyOT%20GAD%20
JIPIJAPA%202019-2023_signed.pdf
Ponce V., L., Orellana S., K., Acuña V., I., Alfonso A., J., & Fuentes F., T.
(2018). Situación de la cacultura ecuatoriana: perspectivas. Revista
Estudios Del Desarrollo Social: Cuba y América Latina, 15(1), 307–
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Galarza and Valverde. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254252
7-7 |
325. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2308-
01322018000100015&lng=es&tlng=es.
Quiroga-Cardona, J. (2021). La resistencia incompleta del café a la
roya: una revisión. Revista Cenicafé, 72(2), e72208. https://doi.
org/10.38141/10778/72208
Valverde L., A., Leon T., M., Parrales V., J., Ayón V., F., Valverde L., W.,
& Gabriel-Ortega, J. (2025). Eects of organic fertilization on the
morphometry and productivity of Sarchimor 4260 coee in its second
harvest. CENTROSUR, 1(25), 65–84. https://orcid.org/0009-0008-6958-
2375
Valverde L, A., Vera V., R., Gutiérrez, S., M., Ayón V., N., Valverde L., W., &
Chilán V., W. (2024). Evaluación morfológica de los híbridos de café
arábiga Sarchimor 4260, Sarchimor 1669 y Manabí 01. ESPANCIENCIA,
15, 16–22. https://doi.org/https://doi.org/10.51260/revista_espamciencia.
v15iE.515
Van der Vossen, H., Bertrand, B., & Charrier, A. (2015). Next generation variety
development for sustainable production of arabica coee (Coea arabica
L.): a review. Euphytica, 204(2), 243–256. https://doi.org/10.1007/
s10681-015-1398-z
Venegas Sánchez, S., Orellana Bueno, D., & Pérez Jara, P. (2018). La realidad
Ecuatoriana en la producción de café. RECIMUNDO, 2(2), 72–91. https://
doi.org/10.26820/recimundo/2.(2).2018.72-91
Vera-Velásquez, F. B., Martin-Fernández, R. A., & Esquivel-García, R. (2024).
Diagnóstico de la producción cafetalera en el cantón Jipijapa, provincia
de Manabí, Ecuador. Revista Arbitrada Interdisciplinaria Koinonía,
9(17), 18–38. https://doi.org/10.35381/r.k.v8i17.3146
Villalta-Villalobos, J., & Gatica-Arias, A. (2019). A look back in time: Genetic
improvement of coee through the application of biotechnology.
Agronomia Mesoamericana, 30(2), 577–599. https://doi.org/10.15517/
am.v30i2.34173