
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Lemus et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254251
5-6 |
A separation is observed between Asian (A) and European groups,
where group B (French and Italian WB) was closer to the Asian pigs.
The four YUCMEX haplotypes (HA, HB, HC and HD) clustered
within clusters from Portugal and Spain pigs, indicating a European
origin.
The presence of only four haplogroups in YUCMEX pigs suggest
little genetic variability, compared to that of Iberian pigs, in which 14
haplogroups were identied (Alves et al., 2003), six to 11 haplotypes
in Indian pigs (Laxmivandana et al., 2022). Asian groups retain a
distinct lineage from Europeans, which has been mentioned in several
papers using mtDNA D-loop analysis (Giura et al., 2000; van Asch
et al., 2012; Alves et al., 2010) and with SNP analysis (Ramírez et al.,
2015). Ishihara et al. (2023) detected 50 haplotypes from Vietnamese
native pigs, with 27 novel haplotypes and no European haplotypes
found.
Concerning YUCMEX pigs the four haplogroups were grouped
into three lineages, within the Portuguese WB and Iberian pigs, away
from the Asian pigs, and groups formed by haplotypes from Eastern
Europe with French WB, Italian WB, Mangalica, WB from Croatia,
and Austrian WB; conrming their European origin from the Iberian
Peninsula from where they were originally left for America. Alves et
al. (2010) suggest that the Iberian Peninsula was a refuge for the pig
(Sus scrofa) during the ice age and that there is no evidence of Asian
mtDNA introgression. Analysis by Vergara et al. (2021) indicates
that Ecuadorian Creole pigs probably diverged from the Asian pig
population and that, like the YUCMEX pigs, they appear to be
genetically inuenced by European and Iberian populations raised in
Spain.
In the Yucatan hairless pig, little diversity was quantied with four
haplotypes that distance them from white commercial pigs (Landrace
and Large White) and spotted pigs (Pietrain), but close to Duroc.
There was a greater phylogenetic relationship of the Yucatan hairless
pig with Iberian and European wild pigs from the Iberian Peninsula,
far from Asian and wild pigs from Eastern Europe. Like the Iberian
pigs, the hairless pigs of Yucatan are distanced from the Asian pigs.
Conclusions
Four YUCMEX haplogroups were grouped into three lineages
close to the WB from Portugal and Spain, distant from the Asian pigs
and the groups formed by WB haplotypes from Eastern Europe. The
European origin, from the Iberian Peninsula of the YUCMEX pig is
conrmed.
This information could contribute to a better understanding of
the origin of the Yucatan hairless pig and to assess its conservation.
Further exploration is needed through complete mitochondrial DNA
sequencing and analysis.
Acknowledgments
This research was funded by the Secretariat for Research,
Innovation and Higher Education, Mérida, Yucatán, Mexico.
Literature cited
Alves, E., Ovilo, C., Rodríguez, M.C., & Silió, L. (2003). Mitochondrial DNA
sequence variation and phylogenetic relationships among Iberian pigs and
other domestic and wild pig populations. Animal Genetics, 34(5), 319-24.
https://doi.org/10.1046/j.1365-2052.2003.01010.x
Alves, P. C., Pinheiro, I., Godinho, R., Vicente, J., Gortáazar, C., & Scandura,
M. (2010). Genetic diversity of wild boar populations and domestic
pig breeds (Sus scrofa) in South-western Europe. Biological Journal of
the Linnean Society, 101(4), 797-822. https://doi.org/10.1111/j.1095-
8312.2010.01530.x
Banayo, J.B., Manese, K.L.V., & Salces, A.J. (2023). Phylogeny and Genetic
Diversity of Philippine Native Pigs (Sus scrofa) as Revealed by
Mitochondrial DNA Analysis. Biochemical Genetics, 61, 1401–1417.
https://doi.org/10.1007/s10528-022-10318-0
Burgos-Paz W., Souza, C.A., Megens, H.J., Ramayo-Caldas, Y., Melo, M.,
LemúsFlores, C., Caal, E., Soto, H. W., Martínez, R., Álvarez, L.
A., Aguirre, L., Iñiguez, V., Revidatti, M. A., MartínezLópez, O. R.,
Llambi, S., EsteveCodina, A., Rodríguez, M. C., Crooijmans, R. P. M.
A., Groenen, M. A. M., & Pérez-Enciso, M. (2013). Porcine colonization
of the Americas: a 60k SNP story. Heredity, 110(4), 321-330. https://doi.
org/10.1038/hdy.2012.109
Giura, E., Kijas, J.M., Amarger, V., Carlborg, O., Jeon, J.T., & Andersson, L.
(2000). The origin of the domestic pig: Independent domestication
and subsequent introgression. Genetics, 154(4),1785–91. https://doi.
org/10.1093/genetics/154.4.1785
Hernández, A.A., García-Munguía, C.A., García-Munguía, A.M., Ortiz-Ortiz,
J.R., Sierra-Vásquez, A.C., & Morales-Flores, S. (2020). Sistema de
producción del cerdo pelón mexicano en la Península de Yucatán. Nova
Scientia, 12(24), 1-22. https://doi.org/10.21640/ns.v12i24.2234
Ishihara S., Arakawa A., Ba N.V., Dinh N.C., Ninh P.H., Okamura, T., DangNguyen,
T. Q., Kikuchi, K., Pham, L. D., & Taniguchi, M. (2023). Population
structure of Vietnamese pigs using mitochondrial DNA. Animal Science
Journal, 94(1), e13875. https://doi.org/10.1111/asj.13875
Jones, G.F. (1998) Genetic Aspects of Domestication, Common Breeds and Their
Origin. In: Rothschild, M.F., & Ruvinsky, A. (Eds). The Genetics of the
Pig. CAB International, Wallingford, 17-50.
Laxmivandana, R., Vashi, Y., Kalita, D., Banik, S., Sahoo, N.R., & Naskar
S. (2022). Genetic diversity in mitochondrial DNA D-loop region of
indigenous pig breeds of India. Journal of Genetic,101, 5. https://doi.
org/10.1007/s12041-021-01353-8
Lemus-Flores, C., Alonso-Morales, R., Toledo-Alvarado, H., Sansor-Nah,
R., Burgos-Paz, W., & DzibCauich, D. (2020). Genetic diversity and
population structure of Yucatan black hairless pig using SNP50K chip.
Abanico Veterinario, 10, 1-12. https://doi.org/10.21929/abavet2020.10
Lemus-Flores, C., Prado, J., Bernal, R.V., Segura-Correa, J.C., & Sansor-
Nah, R. (2023). Genetic relationships of the Yucatan black hairless
pig with Iberian breeds using single nucleotide polymorphism.
Brazilian Journal of Veterinary Research and Animal Science, 60,
e195697. https://doi.org/10.11606/issn.1678-4456.bjvras.2023.195697
Markov, N.I., Ranyuk, M.N., Babaev, E.A., Seryodkin, I.V., Senchik, A.V. Bykova,
E. A., Esipov, A. V., Nurtazin, S. T., Pavlova, O. S., & Matrosova,
V. A, (2022). Introduced, Mixed, and Peripheral: Conservation of
Mitochondrial-DNA Lineages in the Wild Boar (Sus scrofa L.) Population
in the Urals. Diversity, 14(11), 916. https://doi.org/10.3390/d14110916
Miller, S.A., Dykes, D., & Polesky, H.F. (1989). A simple procedure for extracting
DNA from human nucleated cells. Nucleic Acids Research, 16(3),1216.
https://doi.org/10.1093/nar/16.3.1215
Minitab, LLC. (2021). Minitab 15 Statistical Software. State College, PA: Minitab,
Inc. Available from: www.minitab.com.
Niedziałkowska, M., Tarnowska, E., Ligmanowska, J., Jędrzejewska, B.,
Podgórski, T., Radziszewska, A., Ratajczyk, I., Kusza, S., Bunevich, A.
N., Danila, G., Shkvyria, M., Grzybowski, T., & Woźniak, M. (2021).
Clear phylogeographic pattern and genetic structure of wild boar Sus
scrofa population in Central and Eastern Europe. Scientic Reports, 11(1),
9680. https://doi.org/10.1038/s41598-021-88991-1
Ogata, N. (2019). 1519: Hernán Cortés y la llegada del Cerdo a la diversicación
productiva Mesoamericana. Diversidad Biológica y Cultural Trópico
Americano, Universidad Veracruzana. https://tropico-americano.uv.mx/
cerdo-pelon-mexicano/
Ortega-S, J. A., Delgado-Acevedo, J., Villarreal-González, J. G., Borroto-Páez, R.,
& Tamez-González, R. (2019). Wild Pigs in Mexico and the Caribbean.
Invasive Wild Pigs in North America, Edit. CRC Press, 1
a
edition, p. 423-
438. https://doi.org/10.1201/b22014-18
Perrier, X., Flori, A., & Bonnot, F. (2003). Genetic diversity of cultivated
tropical plants. Data analysis methods. By Perla Hamon, P. 1
a
. Edit.,
Eneld, Science Publishers. Montpellier. p 43 - 76. https://doi.
org/10.1201/9781482280043
Ramírez, O., Burgos-Paz, W., Casas, E., Ballester, M., Bianco, E., Olalde,
I. Santpere, G., Novella, V., Gut, M., Lalueza-Fox, C., Saña, M., &
Pérez-Enciso, M. (2015). Genome data from a sixteenth century pig
illuminate modern breed relationships. Heredity 114, 175–184. https://
doi.org/10.1038/hdy.2014.81
Ramos-Canché, M. E., Magaña-Magaña, M. A., Aguilar-Urquizo, E., Pech-Zapata,
A., Piñeiro-Vázquez, A. T., Toledo-López, V.M., & Sanginés-García, J.R.
et al. (2020). Óptimos económicos en la cría del cerdo pelón mexicano:
propuesta de integración para cadena productiva. Ecosistemas y Recursos
Agropecuarios, 7(1), e2302. https://doi.org/10.19136/era.a7nl.2302
Saitou, N., Nei, M. (1987). The Neighbor-joining method: a new method for
reconstructing hylogenetic trees. Molecular Biology and Evolution, 4,
406–425. http://doi.org/10.1093/oxfordjournals.molbev.a040454
Secretaría de Agricultura y Desarrollo Rural. (1998). NOM-051-ZOO-1995.
Trato humanitario en la movilización de animales. Diario Ocial de